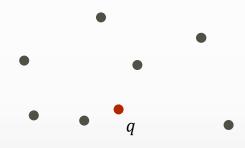
Proximity in the Age of Distraction: Robust Approximate Nearest Neighbor Search

Nearest Neighbor Problem

Dataset of *n* points *P* in a metric space (X, d_X) , e.g. \mathbb{R}^d

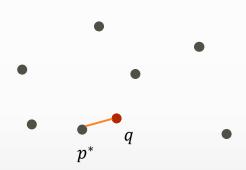
Dataset of *n* points *P* in a metric space (X, d_X) , e.g. \mathbb{R}^d A query point *q* comes online



Dataset of *n* points *P* in a metric space (X, d_X) , e.g. \mathbb{R}^d A query point *q* comes online

Goal:

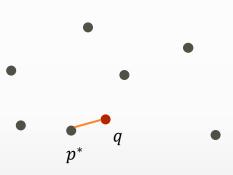
• Find the nearest data point p^*



Dataset of *n* points *P* in a metric space (X, d_X) , e.g. \mathbb{R}^d A query point *q* comes online

Goal:

- Find the nearest data point p^*
- Do it in sub-linear time and small space

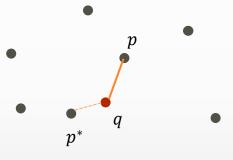


Approximate Nearest Neighbor

Dataset of *n* points *P* in a metric space (X, d_X) , e.g. \mathbb{R}^d A query point *q* comes online

Goal:

- Find the nearest data point p^*
- Do it in sub-linear time and small space
- Approximate Nearest Neighbor
 - If optimal distance is r, report a point in distance cr for $c = (1 + \epsilon)$



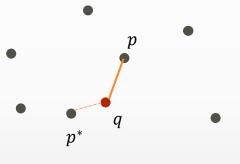
Approximate Nearest Neighbor

Dataset of *n* points *P* in a metric space (X, d_X) , e.g. \mathbb{R}^d A query point *q* comes online

Goal:

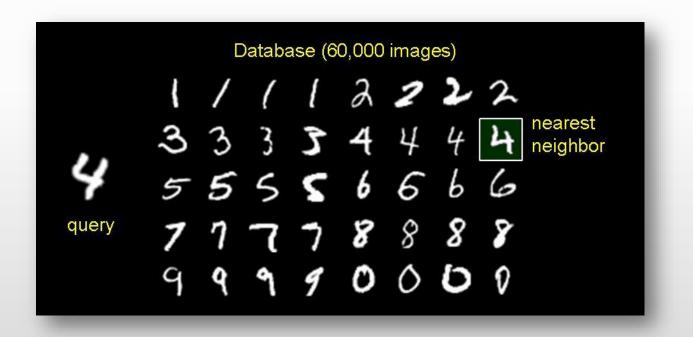
- Find the nearest data point p^*
- Do it in sub-linear time and small space
- Approximate Nearest Neighbor
 - If optimal distance is r, report a point in distance cr for $c = (1 + \epsilon)$
 - For Hamming (and L_1) query time is $n^{1/0(c)}$ [IM98]

– and for Euclidean (L_2) it is $n^{\overline{O(c^2)}}$ [AI08]



Applications of NN

Searching for the closest object



Robust NN Problem

The data points are:

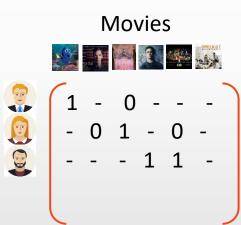
The data points are:

- corrupted, noisy
 - Image denoising

The data points are:

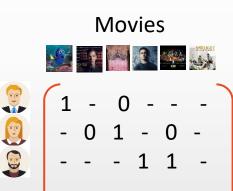
- corrupted, noisy
 - Image denoising
- Incomplete
 - Recommendation: Sparse matrix

Users



The data points are:

- corrupted, noisy
 - Image denoising
- Incomplete
 - Recommendation: Sparse matrix
- Irrelevant
 - Occluded image



Users

• Dataset of n points P in \mathbb{R}^d

$$p_1 = (3,4,0,5) p_2 = (3,2,1,2) p_3 = (2,3,3,1)$$

n=3

n=3,k=2

- Dataset of n points P in \mathbb{R}^d
- A parameter *k*

$$p_1 = (3,4,0,5)$$

 $p_2 = (3,2,1,2)$
 $p_3 = (2,3,3,1)$

- Dataset of n points P in \mathbb{R}^d
- A parameter *k*
- A query point *q* comes online
- Find the closest point after removing k coordinates

$$q = (1,2,1,5)$$

$$p_1 = (3,4,0,5)$$

$$p_2 = (3,2,1,2)$$

$$p_3 = (2,3,3,1)$$

n=3,k=2

- Dataset of n points P in \mathbb{R}^d
- A parameter *k*
- A query point *q* comes online
- Find the closest point after removing k coordinates

$$q = (1,2,1,5)$$

$$p_1 = (3,4,0,5)$$

$$p_2 = (3,2,1,2)$$

$$p_3 = (2,3,3,1)$$

n=3,k=2 dist=1 dist=0 dist=2

- Dataset of n points P in \mathbb{R}^d
- A parameter *k*
- A query point *q* comes online
- Find the closest point after removing k coordinates

$$q = (1,2,1,5)$$

$$p_1 = (3,4,0,5)$$

$$p_2 = (3,2,1,2)$$

$$p_3 = (2,3,3,1)$$

n=3,k=2 dist=1 dist=0 dist=2

- Dataset of n points P in \mathbb{R}^d
- A parameter k
- A query point *q* comes online
- Find the closest point after removing k coordinates

$$q = (1,2,1,5)$$

$$p_1 = (3,4,0,5)$$

$$p_2 = (3,2,1,2)$$

$$p_3 = (2,3,3,1)$$

n=3,k=2 dist=1 dist=0 dist=2

Different set of coordinates for different points
 Applying this naively would require $\binom{d}{k} \approx d^k$

- Dataset of n points P in \mathbb{R}^d
- *d* weights
 - $w = (w_1, w_2, \dots, w_d) \in [0, 1]^d$

$$w = (0.5, 0.5, 0.8, 0.3)$$

$$n=3$$

$$p_1 = (1,4,0,3)$$

$$p_2 = (3,2,4,2)$$

$$p_3 = (4,6,3,4)$$

- Dataset of n points P in \mathbb{R}^d
- *d* weights $w = (w_1, w_2, ..., w_d) \in [0, 1]^d$
- A query point *q* comes online
- Find the closest point after removing a set of coordinates *B* of weight at most 1.

$$w = (0.5, 0.5, 0.8, 0.3)$$

$$q = (1,2,5,5) \quad n=3$$

$$p_1 = (1,4,0,3)$$

$$p_2 = (3,2,4,2)$$

$$p_3 = (4,6,3,4)$$

- Dataset of n points P in \mathbb{R}^d
- *d* weights $w = (w_1, w_2, ..., w_d) \in [0, 1]^d$
- A query point *q* comes online
- Find the closest point after removing a set of coordinates *B* of weight at most 1.

$$w = (0.5, 0.5, 0.8, 0.3)$$

$$q = (1,2,5,5) \quad n=3$$

$$p_1 = (1,4,0,3)$$

$$p_2 = (3,2,4,2)$$

$$p_3 = (4,6,3,4)$$

- Dataset of n points P in \mathbb{R}^d
- *d* weights $w = (w_1, w_2, ..., w_d) \in [0, 1]^d$
- A query point *q* comes online
- Find the closest point after removing a set of coordinates *B* of weight at most 1.

$$w = (0.5, 0.5, 0.8, 0.3)$$

$$q = (1,2,5,5) \qquad n=3$$

$$p_1 = (1,4,0,3) \qquad dist=4$$

$$p_2 = (3,2,4,2) \qquad dist=1$$

$$p_3 = (4,6,3,4) \qquad dist=3$$

- Dataset of n points P in \mathbb{R}^d
- *d* weights $w = (w_1, w_2, ..., w_d) \in [0, 1]^d$
- A query point *q* comes online
- Find the closest point after removing a set of coordinates *B* of weight at most 1.

$$w = (0.5, 0.5, 0.8, 0.3)$$

$$q = (1,2,5,5) \qquad n=3$$

$$p_1 = (1,4,0,3) \qquad dist=4$$

$$p_2 = (3,2,4,2) \qquad dist=1$$

$$p_3 = (4,6,3,4) \qquad dist=3$$

Bicriterion Approximation, for L_1 norm

 Suppose that for p^{*} ⊂ P we have dist(q, p^{*}) = r after ignoring k coordinates

Bicriterion Approximation, for L_1 norm

- Suppose that for p^{*} ⊂ P we have dist(q, p^{*}) = r after ignoring k coordinates
- For $\delta \in (0,1)$
 - Report a point p s.t. $dist(q, p) = O(r/\delta)$ after ignoring $O(k/\delta)$ coordinates.
 - \odot Query time equals to n^{δ} queries in 2-ANN data-structure

Bicriterion Approximation, for L_1 norm

- Suppose that for p^{*} ⊂ P we have dist(q, p^{*}) = r after ignoring k coordinates
- For $\delta \in (0,1)$
 - Report a point p s.t. $dist(q, p) = O(r/\delta)$ after ignoring $O(k/\delta)$ coordinates.
 - \circ Query time equals to n^{δ} queries in 2-ANN data-structure

Why not single criterion?

• Equivalent to exact near neighbor in Hamming: there is a point within distance r of the query iff there is a point within distance 0 after ignoring k = r coordinates

	distance	#ignored	Query Time	
		coordinates	#Queries	Query type
Opt	r	k		

	distance	#ignored coordinates	Query Time	
		coordinates	#Queries	Query type
Opt	r	k		
L ₁	$O(\frac{r}{\delta})$	$O(\frac{k}{\delta})$	n^{δ}	2-ANN

	distance	#ignored	Query Time	
		coordinates	#Queries	Query type
Opt	r	k		
L ₁	$O(\frac{r}{\delta})$	$O(\frac{k}{\delta})$	n^{δ}	2-ANN
Lp	$O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O(k\left(c+\frac{1}{\delta}\right))$	n^{δ}	c ^{1/p} -ANN

	distance	#ignored	Query Time	
		coordinates	#Queries	Query type
Opt	r	k		
L_1	$O(\frac{r}{\delta})$	$O(\frac{k}{\delta})$	n^{δ}	2-ANN
Lp	$O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O(k\left(c+\frac{1}{\delta}\right))$	n^{δ}	c ^{1/p} -ANN
$(1+\epsilon)$ -approximation	$r(1+\epsilon)$	$O(\frac{k}{\epsilon\delta})$	$0(\frac{n^{\delta}}{\epsilon})$	$(1 + \epsilon) - ANN$

	distance	#ignored coordinates	Query #Queries	/ Time Query type
Opt	r	k		
L ₁	$O(\frac{r}{\delta})$	$O(\frac{k}{\delta})$	n^{δ}	2-ANN
Lp	$O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O(k\left(c+\frac{1}{\delta}\right))$	n^{δ}	c ^{1/p} -ANN
$(1+\epsilon)$ -approximation	$r(1+\epsilon)$	$O(\frac{k}{\epsilon\delta})$	$0(\frac{n^{\delta}}{\epsilon})$	$(1 + \epsilon) - ANN$
Budgeted Version	0(r)	Weight of $O(1)$	n^{δ} +0(n	2-ANN $\iota^{\delta}d^4)$

Algorithm

High Level Algorithm

Theorem. If for a point $p^* \subset P$, the L_1 distance of q and p^* is at most r after removing k coordinates, there exists an algorithm which reports a point p whose distance to q is $O(r/\delta)$ after removing $O(k/\delta)$ coordinates.

High Level Algorithm

Theorem. If for a point $p^* \subset P$, the L_1 distance of q and p^* is at most r after removing k coordinates, there exists an algorithm which reports a point p whose distance to q is $O(r/\delta)$ after removing $O(k/\delta)$ coordinates.

 Cannot apply randomized dimensionality reduction e.g. Johnson-Lindenstrauss

High Level Algorithm

Theorem. If for a point $p^* \subset P$, the L_1 distance of q and p^* is at most r after removing k coordinates, there exists an algorithm which reports a point p whose distance to q is $O(r/\delta)$ after removing $O(k/\delta)$ coordinates.

- Cannot apply randomized dimensionality reduction e.g. Johnson-Lindenstrauss
- A set of randomized maps $f_1, f_2, \dots f_m : \mathbb{R}^d \to \mathbb{R}^{d'}$
 - All of them map far points from query to far points
 - At least one of them maps a close point to a close point

High Level Algorithm

Theorem. If for a point $p^* \subset P$, the L_1 distance of q and p^* is at most r after removing k coordinates, there exists an algorithm which reports a point p whose distance to q is $O(r/\delta)$ after removing $O(k/\delta)$ coordinates.

- Cannot apply randomized dimensionality reduction e.g. Johnson-Lindenstrauss
- A set of randomized maps $f_1, f_2, \dots f_m : \mathbb{R}^d \to \mathbb{R}^{d'}$
 - All of them map far points from query to far points
 - At least one of them maps a close point to a close point
- W.I.o.g. assume that the query is the origin
 - Find the data point with minimum norm.

• Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$:

- Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$:
 - Repeat $t = O(\ln n)$ times
 - Sample each coordinate in [d] with probability δ/k

- Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$:
 - Repeat $t = O(\ln n)$ times
 - Sample each coordinate in [d] with probability δ/k
 - \circ E.g. d = 5
 - \circ round 1: coordinates (1,3,4) sampled
 - \circ round 2: coordinate (4) sampled
 - v = (3,6,1,2,4) maps to f(v) = (3,1,2,2)

- Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$:
 - Repeat $t = O(\ln n)$ times
 - Sample each coordinate in [d] with probability δ/k

 \circ E.g. d = 5

- $\circ\,$ round 1: coordinates (1,3,4) sampled
- o round 2: coordinate (4) sampled
- v = (3,6,1,2,4) maps to f(v) = (3,1,2,2)

 $\mathbb{E}[d'] = O(d\ln n \cdot \frac{\delta}{k})$

- Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$:
 - Repeat $t = O(\ln n)$ times
 - Sample each coordinate in [d] with probability δ/k
 - E.g. d = 5
 - round 1: coordinates (1,3,4) sampled
 - o round 2: coordinate (4) sampled
 - v = (3,6,1,2,4) maps to f(v) = (3,1,2,2)

- $\mathbb{E}[d'] = O(d\ln n \cdot \frac{\delta}{k})$
- Simple setup: Consider a vector v where each coordinate is either 0 or ∞

- Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$:
 - Repeat $t = O(\ln n)$ times
 - Sample each coordinate in [d] with probability δ/k

• E.g. d = 5

- round 1: coordinates (1,3,4) sampled
- o round 2: coordinate (4) sampled
- v = (3,6,1,2,4) maps to f(v) = (3,1,2,2)
- Simple setup: Consider a vector v where each coordinate is either 0 or ∞
- Close point:
 - $\circ v$ has at most *k* large coordinates

• Probability of avoiding large coordinates is at least $\left(1 - \frac{\delta}{k}\right)^{k \cdot \ln n} \approx n^{-\delta}$

 $\mathbb{E}[d'] = O(d\ln n \cdot \frac{\delta}{k})$

- Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$:
 - Repeat $t = O(\ln n)$ times
 - Sample each coordinate in [d] with probability δ/k

• E.g. d = 5

- round 1: coordinates (1,3,4) sampled
- o round 2: coordinate (4) sampled
- v = (3,6,1,2,4) maps to f(v) = (3,1,2,2)
- Simple setup: Consider a vector v where each coordinate is either 0 or ∞
- Close point:
 - $\circ v$ has at most *k* large coordinates

• Probability of avoiding large coordinates is at least $\left(1 - \frac{\delta}{k}\right)^{k \cdot \ln n} \approx n^{-\delta}$

• Far point

- $\circ v$ has at least k/δ large coordinates
- Probability of missing large coordinates is at most $\left(1 \frac{\delta}{k}\right)^{(k/\delta) \cdot \ln n} \approx 1/n$

 $\mathbb{E}[d'] = O(d\ln n \cdot \frac{\delta}{k})$

Outline

- Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$
- With probability $n^{-\delta}$
 - \circ all far points will be mapped to far points under L_1 distance
 - \circ a close by point will be mapped to a close by point under L_1 distance.

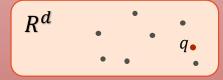
Outline

- Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$
- With probability $n^{-\delta}$
 - \circ all far points will be mapped to far points under L_1 distance
 - \circ a close by point will be mapped to a close by point under L_1 distance.
 - $\,\circ\,$ We can use ANN as a black-box to find it

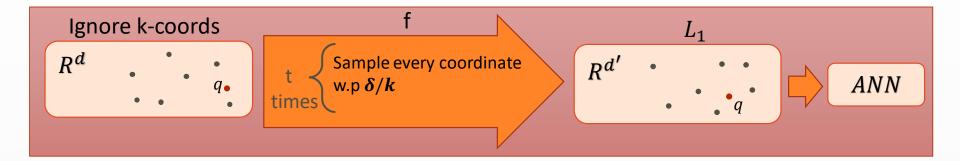
Outline

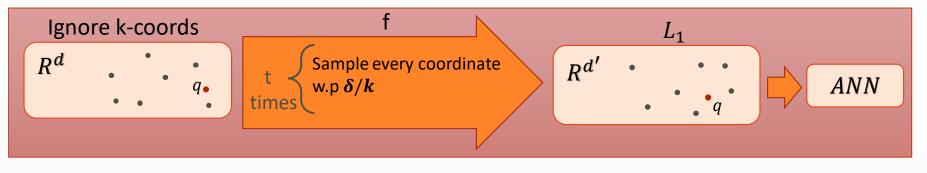
- Embed all the points using a random mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$
- With probability $n^{-\delta}$
 - \circ all far points will be mapped to far points under L_1 distance
 - \circ a close by point will be mapped to a close by point under L_1 distance.
 - $\,\circ\,$ We can use ANN as a black-box to find it
- Repeat this embedding $O(n^{\delta} \log n)$ times and report the best.

Ignore k-coords

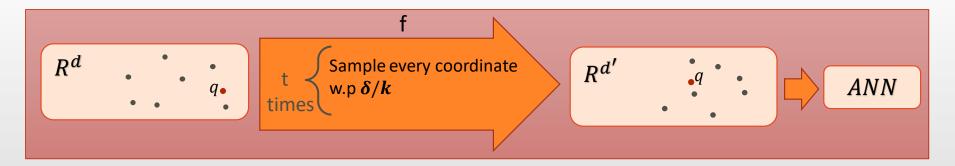


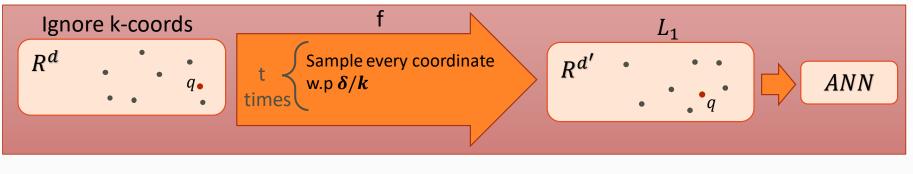




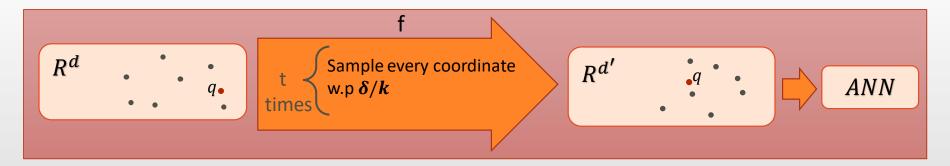


n^δ times





n^δ times



Check the distance of all n^{δ} candidates and report the closest one after ignoring k coordinates

Coordinates are not necessarily 0 and ∞

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $au = \delta/k$

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $\tau = \delta/k$

• $\mathbb{E}[|f'(v)|_1] = \tau |v|_1$

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $\tau = \delta/k$

- $\mathbb{E}[|f'(v)|_1] = \tau |v|_1$
- **Var**[$|f'(v)|_1$] = $\tau (1 \tau)|v|_2^2$

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $au = \delta/k$

- $\mathbb{E}[|f'(v)|_1] = \tau |v|_1$
- **Var**[$|f'(v)|_1$] = $\tau (1 \tau)|v|_2^2$

Need to **bound the influence** of every coordinate.

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $au = \delta/k$

- $\mathbb{E}[|f'(v)|_1] = \tau |v|_1$
- **Var** $[|f'(v)|_1] = \tau (1 \tau)|v|_2^2$

Need to **bound the influence** of every coordinate.

• Truncate every coordinate at r/k, i.e., $v_i = \min\{v_i, r/k\}$

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $au = \delta/k$

- $\mathbb{E}[|f'(v)|_1] = \tau |v|_1$
- **Var**[$|f'(v)|_1$] = $\tau (1 \tau)|v|_2^2$

Need to **bound the influence** of every coordinate.

- Truncate every coordinate at r/k, i.e., $v_i = \min\{v_i, r/k\}$
- r Light point: a point with norm $\leq r$ after truncation
- **R Heavy point:** a point with norm $\geq R$ after truncation

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $au = \delta/k$

- $\mathbb{E}[|f'(v)|_1] = \tau |v|_1$
- **Var**[$|f'(v)|_1$] = $\tau (1 \tau)|v|_2^2$

Need to **bound the influence** of every coordinate.

- Truncate every coordinate at r/k, i.e., $v_i = \min\{v_i, r/k\}$
- r Light point: a point with norm $\leq r$ after truncation
- **R Heavy point:** a point with norm $\geq R$ after truncation
- **Close point:** a point with norm $\leq r$ after ignoring k coordinates
- **Far point:** a point with norm $\geq r/\delta$ after ignoring k/δ coordinates

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $au = \delta/k$

- $\mathbb{E}[|f'(v)|_1] = \tau |v|_1$
- **Var** $[|f'(v)|_1] = \tau (1 \tau)|v|_2^2$

Need to **bound the influence** of every coordinate.

- Truncate every coordinate at r/k, i.e., $v_i = \min\{v_i, r/k\}$
- r Light point: a point with norm $\leq r$ after truncation
- **R Heavy point:** a point with norm $\geq R$ after truncation
- **Close point:** a point with norm $\leq r$ after ignoring k coordinates
- **Far point:** a point with norm $\geq r/\delta$ after ignoring k/δ coordinates

Claim:

• A close point is 2r –light.

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $\tau = \delta/k$

- $\mathbb{E}[|f'(v)|_1] = \tau |v|_1$
- **Var** $[|f'(v)|_1] = \tau (1 \tau)|v|_2^2$

Need to **bound the influence** of every coordinate.

- Truncate every coordinate at r/k, i.e., $v_i = \min\{v_i, r/k\}$
- r Light point: a point with norm $\leq r$ after truncation
- **R Heavy point:** a point with norm $\geq R$ after truncation
- **Close point:** a point with norm $\leq r$ after ignoring k coordinates
- **Far point:** a point with norm $\geq r/\delta$ after ignoring k/δ coordinates

Claim:

- A close point is 2r –light.
- A far point is $\frac{r}{\delta}$ –heavy.

Coordinates are not necessarily 0 and ∞

Let f' be obtained by sampling every coordinate with probability $au = \delta/k$

- $\mathbb{E}[|f'(v)|_1] = \tau |v|_1$
- **Var**[$|f'(v)|_1$] = $\tau (1 \tau)|v|_2^2$

Need to **bound the influence** of every coordinate.

- Truncate every coordinate at r/k, i.e., $v_i = \min\{v_i, r/k\}$
- r Light point: a point with norm $\leq r$ after truncation
- **R Heavy point:** a point with norm $\geq R$ after truncation
- **Close point:** a point with norm $\leq r$ after ignoring k coordinates
- **Far point:** a point with norm $\geq r/\delta$ after ignoring k/δ coordinates

Claim:

- A close point is 2r –light.
- A far point is $\frac{r}{\delta}$ –heavy.

> Analyze the behavior of the maps over the truncated points instead.

Using truncation

• Bound the variance and prove concentration for f' by Chebyshev

Using truncation

• Bound the variance and prove concentration for f' by Chebyshev

f is a concatenation of t = O(ln n) such f'

Using truncation

• Bound the variance and prove concentration for f' by Chebyshev

f is a concatenation of t = O(ln n) such f'

- $\mathbb{E}[|f(v)|_1] = t\tau |v|_1$
- Prove concentration for *f* using Chernoff

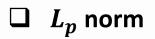
Using truncation

• Bound the variance and prove concentration for f' by Chebyshev

f is a concatenation of t = O(ln n) such f'

- $\mathbb{E}[|f(v)|_1] = t\tau |v|_1$
- Prove concentration for *f* using Chernoff

	distance	#ignored coordinates	Query	/ Time
		coordinates	#Queries	Query type
Opt	r	k		
L ₁	$O(\frac{r}{\delta})$	$O(\frac{k}{\delta})$	n^{δ}	2-ANN



\Box L_p norm

• Minimize the $|v|_p^p$ norm, i.e., $\sum_i v_i^p$ similar to the L_1 norm

$\Box \ L_p \text{ norm}$

• Minimize the $|v|_p^p$ norm, i.e., $\sum_i v_i^p$ similar to the L_1 norm

$L_{p} \qquad \qquad O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	c ^{1/p} -ANN
---	--	--------------	-----------------------

$\Box \ L_p \text{ norm}$

• Minimize the $|v|_p^p$ norm, i.e., $\sum_i v_i^p$ similar to the L_1 norm

$L_{p} \qquad O(r\left(c+\frac{1}{\delta}\right)^{1/p}) \qquad O(k\left(c+\frac{1}{\delta}\right)) \qquad n^{\delta} \qquad C^{1/p}-ANN$	
--	--

Budgeted

$\Box \ L_p \text{ norm}$

• Minimize the $|v|_p^p$ norm, i.e., $\sum_i v_i^p$ similar to the L_1 norm

$L_{p} \qquad \qquad O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O(k\left(c+\frac{1}{\delta}\right))$	n^{δ}	c ^{1/p} -ANN
---	---------------------------------------	--------------	-----------------------

Budgeted

• Map:

 \circ sample coordinate *i* with probability proportional to $1/w_i$

$\Box \ L_p \text{ norm}$

• Minimize the $|v|_p^p$ norm, i.e., $\sum_i v_i^p$ similar to the L_1 norm

L _p	$O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	c ^{1/p} -ANN
----------------	---	--	--------------	-----------------------

Budgeted

- Map:
 - \circ sample coordinate *i* with probability proportional to $1/w_i$
 - \circ To maintain the expectation multiply sampled coordinates by w_i

$\Box \ L_p \text{ norm}$

• Minimize the $|v|_p^p$ norm, i.e., $\sum_i v_i^p$ similar to the L_1 norm

$L_{p} \qquad \qquad O\left(r\left(c+\frac{1}{\delta}\right)^{1/p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	c ^{1/p} -ANN
--	--	--------------	-----------------------

Budgeted

- Map:
 - \circ sample coordinate *i* with probability proportional to $1/w_i$
 - \circ To maintain the expectation multiply sampled coordinates by w_i

• Truncation:

• Truncate coordinate *i* with by value $\frac{r}{c/w_i-1}$

$\Box \ L_p \text{ norm}$

• Minimize the $|v|_p^p$ norm, i.e., $\sum_i v_i^p$ similar to the L_1 norm

$L_{p} \qquad \qquad O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	c ^{1/p} -ANN
---	--	--------------	-----------------------

Budgeted

- Map:
 - \circ sample coordinate *i* with probability proportional to $1/w_i$
 - \circ To maintain the expectation multiply sampled coordinates by w_i

• Truncation:

- Truncate coordinate *i* with by value $\frac{r}{c/w_i-1}$
- $\,\circ\,$ E.g. a coordinate of cost approaching 0 will be truncated to 0

$\Box \ L_p \text{ norm}$

• Minimize the $|v|_p^p$ norm, i.e., $\sum_i v_i^p$ similar to the L_1 norm

L_p $O(r\left(c+\frac{1}{\delta}\right)$	$\Big)^{1/p} \qquad O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	c ^{1/p} -ANN
--	---	--------------	-----------------------

Budgeted

• Map:

 \circ sample coordinate *i* with probability proportional to $1/w_i$

 \circ To maintain the expectation multiply sampled coordinates by w_i

• Truncation:

- Truncate coordinate *i* with by value $\frac{r}{c/w_i-1}$
- $\,\circ\,$ E.g. a coordinate of cost approaching 0 will be truncated to 0

Budgeted Version	O(r)	Weight of $O(1)$	n^{δ}	2-ANN
			+0	$O(n^{\delta}d^4)$

Conclusion

	distance	#ignored		Time
		coordinates	#Queries	Query type
Opt	r	k		
L ₁	$O(\frac{r}{\delta})$	$O(\frac{k}{\delta})$	n^{δ}	2-ANN
L_{p}	$O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O(k\left(c+\frac{1}{\delta}\right))$	n^{δ}	c ^{1/p} -ANN
$(1+\epsilon)$ -approximation	$r(1+\epsilon)$	$O(\frac{k}{\epsilon\delta})$	$0(\frac{n^{\delta}}{\epsilon})$	$(1 + \epsilon) - ANN$
Budgeted Version	0(r)	Weight of $O(1)$	n^{δ} +0(r	2-ANN $\iota^{\delta}d^4)$

Conclusion

	distance	#ignored		Time
		coordinates	#Queries	Query type
Opt	r	k		
L ₁	$O(\frac{r}{\delta})$	$O(\frac{k}{\delta})$	n^{δ}	2-ANN
L _p	$O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O(k\left(c+\frac{1}{\delta}\right))$	n^{δ}	c ^{1/p} -ANN
$(1+\epsilon)$ -approximation	$r(1+\epsilon)$	$O(\frac{k}{\epsilon\delta})$	$0(\frac{n^{\delta}}{\epsilon})$	$(1 + \epsilon) - ANN$
Budgeted Version	0(r)	Weight of $O(1)$	n^{δ} +0(r	2-ANN $\iota^{\delta}d^4)$

Open Problems

- Improve the dependence on δ
- Prove lower bounds

Conclusion

	distance	#ignored		/ Time
		coordinates	#Queries	Query type
Opt	r	k		
L ₁	$O(\frac{r}{\delta})$	$O(\frac{k}{\delta})$	n^{δ}	2-ANN
L _p	$O(r\left(c+\frac{1}{\delta}\right)^{1/p})$	$O(k\left(c+\frac{1}{\delta}\right))$	n^{δ}	c ^{1/p} -ANN
$(1+\epsilon)$ -approximation	$r(1+\epsilon)$	$O(\frac{k}{\epsilon\delta})$	$0(\frac{n^{\delta}}{\epsilon})$	$(1 + \epsilon) - ANN$
Budgeted Version	0(r)	Weight of $O(1)$	n^{δ} +0(n	2-ANN $\iota^{\delta}d^4)$

Open Problems

- Improve the dependence on δ
- Prove lower bounds

Thank You!