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Approximate Nearest Neighbor

Dataset of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑𝑋), e.g. ℝ𝑑

A query point 𝑞 comes online

Goal: 

• Find the nearest data point 𝑝∗

• Do it in sub-linear time and small space

• Approximate Nearest Neighbor

─ If optimal distance is 𝑟, report a point in distance c𝑟 for 
c = 1 + 𝜖

─ For Hamming (and 𝐿1) query time is 𝑛1/𝑂(𝑐) [IM98] 

─ and for Euclidean (𝐿2) it is 𝑛
1

𝑂(𝑐2) [AI08]
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Applications of NN

Searching for the closest object
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Robustness

The data points are:

• corrupted, noisy

• Image denoising

• Incomplete 

• Recommendation: Sparse 
matrix

• Irrelevant

• Occluded image
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The Robust NN problem

• Dataset of 𝑛 points 𝑃 in ℝ𝑑 n=3
𝑝1 = (3,4,0,5)
𝑝2 = (3,2,1,2)
𝑝3 = (2,3,3,1)
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The Robust NN problem

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• A parameter 𝒌

• A query point 𝑞 comes online

• Find the closest point after 
removing 𝒌 coordinates

𝑞 = (1,2, 1,5) n=3,k=2
𝑝1 = (3,4,0,5) dist=1
𝑝2 = (3,2,1,2) dist=0
𝑝3 = (2,3,3,1) dist=2

 Different set of coordinates for different points

 Applying this naively would require 𝑑
𝑘
≈ 𝑑𝑘
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Bicriterion Approximation, for 𝐿1 norm

• Suppose that for 𝑝∗ ⊂ 𝑃 we have 𝑑𝑖𝑠𝑡 𝑞, 𝑝∗ = 𝑟 after 
ignoring 𝑘 coordinates

• For 𝛿 ∈ (0,1)

oReport a point 𝑝 s.t. 𝑑𝑖𝑠𝑡 𝑞, 𝑝 = 𝑂(𝑟/𝛿) after 
ignoring 𝑂(𝑘/𝛿) coordinates.

oQuery time equals to 𝑛𝛿 queries in 2-ANN data-
structure

Why not single criterion?

• Equivalent to exact near neighbor in Hamming: there is a 
point within distance 𝑟 of the query iff there is a point 
within distance 0 after ignoring 𝑘 = 𝑟 coordinates
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Version
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High Level Algorithm

Theorem.  If for a point 𝑝∗ ⊂ 𝑃 , the 𝐿1 distance of 𝑞 and 𝑝∗ is 
at most 𝑟 after removing 𝑘 coordinates, there exists an 
algorithm which reports a point 𝑝 whose distance to 𝑞 is 
𝑂(𝑟/𝛿) after removing 𝑂(𝑘/𝛿) coordinates. 
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• Cannot apply randomized dimensionality reduction e.g. 
Johnson-Lindenstrauss

• A set of randomized maps 𝒇𝟏, 𝒇𝟐, … 𝒇𝒎: ℝ
𝒅 → ℝ𝒅

′

• All of them map far points from query to far points

• At least one of them maps a close point to a close point

• W.l.o.g. assume that the query is the origin
• Find the data point with minimum norm.

Theorem.  If for a point 𝑝∗ ⊂ 𝑃 , the 𝐿1 distance of 𝑞 and 𝑝∗ is 
at most 𝑟 after removing 𝑘 coordinates, there exists an 
algorithm which reports a point 𝑝 whose distance to 𝑞 is 
𝑂(𝑟/𝛿) after removing 𝑂(𝑘/𝛿) coordinates. 
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• Embed all the points using a random mapping 𝒇:ℝ𝒅 → ℝ𝒅
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:

o Repeat 𝑡 = 𝑂(ln 𝑛) times 

 Sample each coordinate in [𝑑] with probability 𝛿/𝑘

o E.g. 𝑑 = 5

o round 1: coordinates (1,3,4) sampled

o round 2: coordinate (4) sampled

o 𝑣 = 3,6,1,2,4 maps to 𝑓 𝑣 = (3,1,2,2)

• Simple setup: Consider a vector 𝑣 where each coordinate is either 0 or ∞

• Close point: 

o 𝑣 has at most 𝑘 large coordinates

o Probability of avoiding large coordinates is at least 1 −
𝛿

𝑘

𝑘⋅ln 𝑛
≈ 𝑛−𝛿

• Far point

o 𝑣 has at least 𝑘/𝛿 large coordinates

o Probability of missing large coordinates is at most 1 −
𝛿

𝑘

(𝑘/𝛿)⋅ln 𝑛
≈ 1/𝑛

𝔼 𝒅′ = 𝑶(𝒅 𝐥𝐧 𝒏 ⋅
𝜹

𝒌
)
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• Embed all the points using a random mapping 𝑓:ℝ𝑑 → ℝ𝑑
′

• With probability 𝑛−𝛿

o all far points will be mapped to far points under 𝐿1 distance 

o a close by point will be mapped to a close by point under 𝐿1 distance.
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Outline

• Embed all the points using a random mapping 𝑓:ℝ𝑑 → ℝ𝑑
′

• With probability 𝑛−𝛿

o all far points will be mapped to far points under 𝐿1 distance 

o a close by point will be mapped to a close by point under 𝐿1 distance.

o We can use ANN as a black-box to find it

• Repeat this embedding O(𝑛𝛿 log 𝑛) times and report the 
best.
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Check the distance of all 𝑛𝛿 candidates and report the closest one after ignoring 
𝑘 coordinates 
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Need to bound the influence of every coordinate.
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Analyze the behavior of the maps over the truncated points instead.
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