
Proximity in the Age of Distraction:

Robust Approximate Nearest Neighbor Search

Sariel Har-Peled
UIUC

Sepideh Mahabadi
MIT

Nearest Neighbor Problem

Nearest Neighbor

Dataset of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑𝑋), e.g. ℝ𝑑

Nearest Neighbor

Dataset of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑𝑋), e.g. ℝ𝑑

A query point 𝑞 comes online

𝑞

Nearest Neighbor

Dataset of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑𝑋), e.g. ℝ𝑑

A query point 𝑞 comes online

Goal:

• Find the nearest data point 𝑝∗
𝑞

𝑝∗

Nearest Neighbor

Dataset of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑𝑋), e.g. ℝ𝑑

A query point 𝑞 comes online

Goal:

• Find the nearest data point 𝑝∗

• Do it in sub-linear time and small space

𝑞
𝑝∗

Approximate Nearest Neighbor

Dataset of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑𝑋), e.g. ℝ𝑑

A query point 𝑞 comes online

Goal:

• Find the nearest data point 𝑝∗

• Do it in sub-linear time and small space

• Approximate Nearest Neighbor

─ If optimal distance is 𝑟, report a point in distance c𝑟 for
c = 1 + 𝜖

𝑞
𝑝∗

𝑝

Approximate Nearest Neighbor

Dataset of 𝑛 points 𝑃 in a metric space (𝑋, 𝑑𝑋), e.g. ℝ𝑑

A query point 𝑞 comes online

Goal:

• Find the nearest data point 𝑝∗

• Do it in sub-linear time and small space

• Approximate Nearest Neighbor

─ If optimal distance is 𝑟, report a point in distance c𝑟 for
c = 1 + 𝜖

─ For Hamming (and 𝐿1) query time is 𝑛1/𝑂(𝑐) [IM98]

─ and for Euclidean (𝐿2) it is 𝑛
1

𝑂(𝑐2) [AI08]

𝑞
𝑝∗

𝑝

Applications of NN

Searching for the closest object

Robust NN Problem

Robustness

The data points are:

Robustness

The data points are:

• corrupted, noisy

• Image denoising

Robustness

The data points are:

• corrupted, noisy

• Image denoising

• Incomplete

• Recommendation: Sparse
matrix

1 - 0 - - -
- 0 1 - 0 -
- - - 1 1 -

Movies

U
se

rs

Robustness

The data points are:

• corrupted, noisy

• Image denoising

• Incomplete

• Recommendation: Sparse
matrix

• Irrelevant

• Occluded image

1 - 0 - - -
- 0 1 - 0 -
- - - 1 1 -

Movies

U
se

rs

The Robust NN problem

• Dataset of 𝑛 points 𝑃 in ℝ𝑑 n=3
𝑝1 = (3,4,0,5)
𝑝2 = (3,2,1,2)
𝑝3 = (2,3,3,1)

The Robust NN problem

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• A parameter 𝒌

n=3,k=2
𝑝1 = (3,4,0,5)
𝑝2 = (3,2,1,2)
𝑝3 = (2,3,3,1)

The Robust NN problem

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• A parameter 𝒌

• A query point 𝑞 comes online

• Find the closest point after
removing 𝒌 coordinates

𝑞 = (1,2, 1,5) n=3,k=2
𝑝1 = (3,4,0,5)
𝑝2 = (3,2,1,2)
𝑝3 = (2,3,3,1)

The Robust NN problem

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• A parameter 𝒌

• A query point 𝑞 comes online

• Find the closest point after
removing 𝒌 coordinates

𝑞 = (1,2, 1,5) n=3,k=2
𝑝1 = (3,4,0,5) dist=1
𝑝2 = (3,2,1,2) dist=0
𝑝3 = (2,3,3,1) dist=2

The Robust NN problem

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• A parameter 𝒌

• A query point 𝑞 comes online

• Find the closest point after
removing 𝒌 coordinates

𝑞 = (1,2, 1,5) n=3,k=2
𝑝1 = (3,4,0,5) dist=1
𝑝2 = (3,2,1,2) dist=0
𝑝3 = (2,3,3,1) dist=2

The Robust NN problem

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• A parameter 𝒌

• A query point 𝑞 comes online

• Find the closest point after
removing 𝒌 coordinates

𝑞 = (1,2, 1,5) n=3,k=2
𝑝1 = (3,4,0,5) dist=1
𝑝2 = (3,2,1,2) dist=0
𝑝3 = (2,3,3,1) dist=2

 Different set of coordinates for different points

 Applying this naively would require 𝑑
𝑘
≈ 𝑑𝑘

Budgeted Version

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• 𝑑 weights
𝑤 = (𝑤1, 𝑤2, … ,𝑤𝑑) ∈ 0,1 𝑑

𝑤 = 0.5, 0.5, 0.8, 0.3
n=3

𝑝1 = (1,4,0,3)
𝑝2 = (3,2,4,2)
𝑝3 = (4,6,3,4)

Budgeted Version

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• 𝑑 weights
𝑤 = (𝑤1, 𝑤2, … ,𝑤𝑑) ∈ 0,1 𝑑

• A query point 𝑞 comes online

• Find the closest point after
removing a set of coordinates 𝐵
of weight at most 𝟏.

𝑤 = 0.5, 0.5, 0.8, 0.3
𝑞 = (1,2, 5,5) n=3
𝑝1 = (1,4,0,3)
𝑝2 = (3,2,4,2)
𝑝3 = (4,6,3,4)

Budgeted Version

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• 𝑑 weights
𝑤 = (𝑤1, 𝑤2, … ,𝑤𝑑) ∈ 0,1 𝑑

• A query point 𝑞 comes online

• Find the closest point after
removing a set of coordinates 𝐵
of weight at most 𝟏.

𝑤 = 0.5, 0.5, 0.8, 0.3
𝑞 = (1,2, 5,5) n=3
𝑝1 = (1,4,0,3)
𝑝2 = (3,2,4,2)
𝑝3 = (4,6,3,4)

Budgeted Version

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• 𝑑 weights
𝑤 = (𝑤1, 𝑤2, … ,𝑤𝑑) ∈ 0,1 𝑑

• A query point 𝑞 comes online

• Find the closest point after
removing a set of coordinates 𝐵
of weight at most 𝟏.

𝑤 = 0.5, 0.5, 0.8, 0.3
𝑞 = (1,2, 5,5) n=3
𝑝1 = (1,4,0,3) dist=4
𝑝2 = (3,2,4,2) dist=1
𝑝3 = (4,6,3,4) dist=3

Budgeted Version

• Dataset of 𝑛 points 𝑃 in ℝ𝑑

• 𝑑 weights
𝑤 = (𝑤1, 𝑤2, … ,𝑤𝑑) ∈ 0,1 𝑑

• A query point 𝑞 comes online

• Find the closest point after
removing a set of coordinates 𝐵
of weight at most 𝟏.

𝑤 = 0.5, 0.5, 0.8, 0.3
𝑞 = (1,2, 5,5) n=3
𝑝1 = (1,4,0,3) dist=4
𝑝2 = (3,2,4,2) dist=1
𝑝3 = (4,6,3,4) dist=3

Results

Bicriterion Approximation, for 𝐿1 norm

• Suppose that for 𝑝∗ ⊂ 𝑃 we have 𝑑𝑖𝑠𝑡 𝑞, 𝑝∗ = 𝑟 after
ignoring 𝑘 coordinates

Results

Bicriterion Approximation, for 𝐿1 norm

• Suppose that for 𝑝∗ ⊂ 𝑃 we have 𝑑𝑖𝑠𝑡 𝑞, 𝑝∗ = 𝑟 after
ignoring 𝑘 coordinates

• For 𝛿 ∈ (0,1)

oReport a point 𝑝 s.t. 𝑑𝑖𝑠𝑡 𝑞, 𝑝 = 𝑂(𝑟/𝛿) after
ignoring 𝑂(𝑘/𝛿) coordinates.

oQuery time equals to 𝑛𝛿 queries in 2-ANN data-
structure

Results

Bicriterion Approximation, for 𝐿1 norm

• Suppose that for 𝑝∗ ⊂ 𝑃 we have 𝑑𝑖𝑠𝑡 𝑞, 𝑝∗ = 𝑟 after
ignoring 𝑘 coordinates

• For 𝛿 ∈ (0,1)

oReport a point 𝑝 s.t. 𝑑𝑖𝑠𝑡 𝑞, 𝑝 = 𝑂(𝑟/𝛿) after
ignoring 𝑂(𝑘/𝛿) coordinates.

oQuery time equals to 𝑛𝛿 queries in 2-ANN data-
structure

Why not single criterion?

• Equivalent to exact near neighbor in Hamming: there is a
point within distance 𝑟 of the query iff there is a point
within distance 0 after ignoring 𝑘 = 𝑟 coordinates

Results

distance #ignored
coordinates

Query Time
#Queries Query type

Opt 𝑟 𝑘

Results

distance #ignored
coordinates

Query Time
#Queries Query type

Opt 𝑟 𝑘

𝐿1 𝑂(
𝑟

𝛿
) 𝑂(

𝑘

𝛿
)

𝑛𝛿 2-ANN

Results

distance #ignored
coordinates

Query Time
#Queries Query type

Opt 𝑟 𝑘

𝐿1 𝑂(
𝑟

𝛿
) 𝑂(

𝑘

𝛿
)

𝑛𝛿 2-ANN

𝐿𝐩
𝑂(𝑟 𝑐 +

1

𝛿

1/p

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/p-ANN

Results

distance #ignored
coordinates

Query Time
#Queries Query type

Opt 𝑟 𝑘

𝐿1 𝑂(
𝑟

𝛿
) 𝑂(

𝑘

𝛿
)

𝑛𝛿 2-ANN

𝐿𝐩
𝑂(𝑟 𝑐 +

1

𝛿

1/p

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/p-ANN

(1 + 𝜖)-
approximation

𝑟(1 + 𝜖) 𝑂(
𝑘

𝜖𝛿
) O(

𝑛𝛿

𝜖
)

1 + 𝜖 −ANN

Results

distance #ignored
coordinates

Query Time
#Queries Query type

Opt 𝑟 𝑘

𝐿1 𝑂(
𝑟

𝛿
) 𝑂(

𝑘

𝛿
)

𝑛𝛿 2-ANN

𝐿𝐩
𝑂(𝑟 𝑐 +

1

𝛿

1/p

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/p-ANN

(1 + 𝜖)-
approximation

𝑟(1 + 𝜖) 𝑂(
𝑘

𝜖𝛿
) O(

𝑛𝛿

𝜖
)

1 + 𝜖 −ANN

Budgeted
Version

𝑂(𝑟) Weight of 𝑂(1) 𝑛𝛿 2-ANN

+𝑂(𝑛𝛿𝑑4)

Algorithm

High Level Algorithm

Theorem. If for a point 𝑝∗ ⊂ 𝑃 , the 𝐿1 distance of 𝑞 and 𝑝∗ is
at most 𝑟 after removing 𝑘 coordinates, there exists an
algorithm which reports a point 𝑝 whose distance to 𝑞 is
𝑂(𝑟/𝛿) after removing 𝑂(𝑘/𝛿) coordinates.

High Level Algorithm

• Cannot apply randomized dimensionality reduction e.g.
Johnson-Lindenstrauss

Theorem. If for a point 𝑝∗ ⊂ 𝑃 , the 𝐿1 distance of 𝑞 and 𝑝∗ is
at most 𝑟 after removing 𝑘 coordinates, there exists an
algorithm which reports a point 𝑝 whose distance to 𝑞 is
𝑂(𝑟/𝛿) after removing 𝑂(𝑘/𝛿) coordinates.

High Level Algorithm

• Cannot apply randomized dimensionality reduction e.g.
Johnson-Lindenstrauss

• A set of randomized maps 𝒇𝟏, 𝒇𝟐, … 𝒇𝒎: ℝ
𝒅 → ℝ𝒅

′

• All of them map far points from query to far points

• At least one of them maps a close point to a close point

Theorem. If for a point 𝑝∗ ⊂ 𝑃 , the 𝐿1 distance of 𝑞 and 𝑝∗ is
at most 𝑟 after removing 𝑘 coordinates, there exists an
algorithm which reports a point 𝑝 whose distance to 𝑞 is
𝑂(𝑟/𝛿) after removing 𝑂(𝑘/𝛿) coordinates.

High Level Algorithm

• Cannot apply randomized dimensionality reduction e.g.
Johnson-Lindenstrauss

• A set of randomized maps 𝒇𝟏, 𝒇𝟐, … 𝒇𝒎: ℝ
𝒅 → ℝ𝒅

′

• All of them map far points from query to far points

• At least one of them maps a close point to a close point

• W.l.o.g. assume that the query is the origin
• Find the data point with minimum norm.

Theorem. If for a point 𝑝∗ ⊂ 𝑃 , the 𝐿1 distance of 𝑞 and 𝑝∗ is
at most 𝑟 after removing 𝑘 coordinates, there exists an
algorithm which reports a point 𝑝 whose distance to 𝑞 is
𝑂(𝑟/𝛿) after removing 𝑂(𝑘/𝛿) coordinates.

A Randomized Map

• Embed all the points using a random mapping 𝒇:ℝ𝒅 → ℝ𝒅
′
:

A Randomized Map

• Embed all the points using a random mapping 𝒇:ℝ𝒅 → ℝ𝒅
′
:

o Repeat 𝑡 = 𝑂(ln 𝑛) times

 Sample each coordinate in [𝑑] with probability 𝛿/𝑘

A Randomized Map

• Embed all the points using a random mapping 𝒇:ℝ𝒅 → ℝ𝒅
′
:

o Repeat 𝑡 = 𝑂(ln 𝑛) times

 Sample each coordinate in [𝑑] with probability 𝛿/𝑘

o E.g. 𝑑 = 5

o round 1: coordinates (1,3,4) sampled

o round 2: coordinate (4) sampled

o 𝑣 = 3,6,1,2,4 maps to 𝑓 𝑣 = (3,1,2,2)

A Randomized Map

• Embed all the points using a random mapping 𝒇:ℝ𝒅 → ℝ𝒅
′
:

o Repeat 𝑡 = 𝑂(ln 𝑛) times

 Sample each coordinate in [𝑑] with probability 𝛿/𝑘

o E.g. 𝑑 = 5

o round 1: coordinates (1,3,4) sampled

o round 2: coordinate (4) sampled

o 𝑣 = 3,6,1,2,4 maps to 𝑓 𝑣 = (3,1,2,2)

𝔼 𝒅′ = 𝑶(𝒅 𝐥𝐧 𝒏 ⋅
𝜹

𝒌
)

A Randomized Map

• Embed all the points using a random mapping 𝒇:ℝ𝒅 → ℝ𝒅
′
:

o Repeat 𝑡 = 𝑂(ln 𝑛) times

 Sample each coordinate in [𝑑] with probability 𝛿/𝑘

o E.g. 𝑑 = 5

o round 1: coordinates (1,3,4) sampled

o round 2: coordinate (4) sampled

o 𝑣 = 3,6,1,2,4 maps to 𝑓 𝑣 = (3,1,2,2)

• Simple setup: Consider a vector 𝑣 where each coordinate is either 0 or ∞

𝔼 𝒅′ = 𝑶(𝒅 𝐥𝐧 𝒏 ⋅
𝜹

𝒌
)

A Randomized Map

• Embed all the points using a random mapping 𝒇:ℝ𝒅 → ℝ𝒅
′
:

o Repeat 𝑡 = 𝑂(ln 𝑛) times

 Sample each coordinate in [𝑑] with probability 𝛿/𝑘

o E.g. 𝑑 = 5

o round 1: coordinates (1,3,4) sampled

o round 2: coordinate (4) sampled

o 𝑣 = 3,6,1,2,4 maps to 𝑓 𝑣 = (3,1,2,2)

• Simple setup: Consider a vector 𝑣 where each coordinate is either 0 or ∞

• Close point:

o 𝑣 has at most 𝑘 large coordinates

o Probability of avoiding large coordinates is at least 1 −
𝛿

𝑘

𝑘⋅ln 𝑛
≈ 𝑛−𝛿

𝔼 𝒅′ = 𝑶(𝒅 𝐥𝐧 𝒏 ⋅
𝜹

𝒌
)

A Randomized Map

• Embed all the points using a random mapping 𝒇:ℝ𝒅 → ℝ𝒅
′
:

o Repeat 𝑡 = 𝑂(ln 𝑛) times

 Sample each coordinate in [𝑑] with probability 𝛿/𝑘

o E.g. 𝑑 = 5

o round 1: coordinates (1,3,4) sampled

o round 2: coordinate (4) sampled

o 𝑣 = 3,6,1,2,4 maps to 𝑓 𝑣 = (3,1,2,2)

• Simple setup: Consider a vector 𝑣 where each coordinate is either 0 or ∞

• Close point:

o 𝑣 has at most 𝑘 large coordinates

o Probability of avoiding large coordinates is at least 1 −
𝛿

𝑘

𝑘⋅ln 𝑛
≈ 𝑛−𝛿

• Far point

o 𝑣 has at least 𝑘/𝛿 large coordinates

o Probability of missing large coordinates is at most 1 −
𝛿

𝑘

(𝑘/𝛿)⋅ln 𝑛
≈ 1/𝑛

𝔼 𝒅′ = 𝑶(𝒅 𝐥𝐧 𝒏 ⋅
𝜹

𝒌
)

Outline

• Embed all the points using a random mapping 𝑓:ℝ𝑑 → ℝ𝑑
′

• With probability 𝑛−𝛿

o all far points will be mapped to far points under 𝐿1 distance

o a close by point will be mapped to a close by point under 𝐿1 distance.

Outline

• Embed all the points using a random mapping 𝑓:ℝ𝑑 → ℝ𝑑
′

• With probability 𝑛−𝛿

o all far points will be mapped to far points under 𝐿1 distance

o a close by point will be mapped to a close by point under 𝐿1 distance.

o We can use ANN as a black-box to find it

Outline

• Embed all the points using a random mapping 𝑓:ℝ𝑑 → ℝ𝑑
′

• With probability 𝑛−𝛿

o all far points will be mapped to far points under 𝐿1 distance

o a close by point will be mapped to a close by point under 𝐿1 distance.

o We can use ANN as a black-box to find it

• Repeat this embedding O(𝑛𝛿 log 𝑛) times and report the
best.

Algorithm

𝑅𝑑
𝑞

Ignore k-coords

Algorithm

t
times

f

Sample every coordinate
w.p 𝜹/𝒌

𝑅𝑑
𝑞

𝑅𝑑
′

𝑞

Ignore k-coords 𝐿1

Algorithm

t
times

f

Sample every coordinate
w.p 𝜹/𝒌

𝑅𝑑
𝑞

𝑅𝑑
′

𝑞
𝐴𝑁𝑁

Ignore k-coords 𝐿1

Algorithm

t
times

f

Sample every coordinate
w.p 𝜹/𝒌

. . .𝑛𝛿 times

𝑅𝑑
𝑞

𝑅𝑑
′

𝑞
𝐴𝑁𝑁

t
times

f

Sample every coordinate
w.p 𝜹/𝒌

𝑅𝑑
𝑞

𝑅𝑑
′

𝑞
𝐴𝑁𝑁

Ignore k-coords 𝐿1

Algorithm

Check the distance of all 𝑛𝛿 candidates and report the closest one after ignoring
𝑘 coordinates

t
times

f

Sample every coordinate
w.p 𝜹/𝒌

. . .𝑛𝛿 times

𝑅𝑑
𝑞

𝑅𝑑
′

𝑞
𝐴𝑁𝑁

t
times

f

Sample every coordinate
w.p 𝜹/𝒌

𝑅𝑑
𝑞

𝑅𝑑
′

𝑞
𝐴𝑁𝑁

Ignore k-coords 𝐿1

Analysis

Truncation

Coordinates are not necessarily 𝟎 and ∞

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

• 𝔼 𝑓′ 𝑣 1 = 𝜏 𝑣 1

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

• 𝔼 𝑓′ 𝑣 1 = 𝜏 𝑣 1

• 𝐕𝐚𝐫 𝑓′ 𝑣 1 = 𝜏 1 − 𝜏 𝑣 2
2

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

• 𝔼 𝑓′ 𝑣 1 = 𝜏 𝑣 1

• 𝐕𝐚𝐫 𝑓′ 𝑣 1 = 𝜏 1 − 𝜏 𝑣 2
2

Need to bound the influence of every coordinate.

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

• 𝔼 𝑓′ 𝑣 1 = 𝜏 𝑣 1

• 𝐕𝐚𝐫 𝑓′ 𝑣 1 = 𝜏 1 − 𝜏 𝑣 2
2

Need to bound the influence of every coordinate.

• Truncate every coordinate at 𝒓/𝒌 ,i.e., 𝒗𝒊 = 𝐦𝐢𝐧{𝒗𝒊, 𝒓/𝒌}

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

• 𝔼 𝑓′ 𝑣 1 = 𝜏 𝑣 1

• 𝐕𝐚𝐫 𝑓′ 𝑣 1 = 𝜏 1 − 𝜏 𝑣 2
2

Need to bound the influence of every coordinate.

• Truncate every coordinate at 𝒓/𝒌 ,i.e., 𝒗𝒊 = 𝐦𝐢𝐧{𝒗𝒊, 𝒓/𝒌}

• 𝒓 −Light point: a point with norm ≤ 𝑟 after truncation

• R− Heavy point: a point with norm ≥ 𝑅 after truncation

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

• 𝔼 𝑓′ 𝑣 1 = 𝜏 𝑣 1

• 𝐕𝐚𝐫 𝑓′ 𝑣 1 = 𝜏 1 − 𝜏 𝑣 2
2

Need to bound the influence of every coordinate.

• Truncate every coordinate at 𝒓/𝒌 ,i.e., 𝒗𝒊 = 𝐦𝐢𝐧{𝒗𝒊, 𝒓/𝒌}

• 𝒓 −Light point: a point with norm ≤ 𝑟 after truncation

• R− Heavy point: a point with norm ≥ 𝑅 after truncation

• Close point: a point with norm ≤ 𝑟 after ignoring 𝑘 coordinates

• Far point: a point with norm ≥ 𝑟/𝛿 after ignoring 𝑘/𝛿 coordinates

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

• 𝔼 𝑓′ 𝑣 1 = 𝜏 𝑣 1

• 𝐕𝐚𝐫 𝑓′ 𝑣 1 = 𝜏 1 − 𝜏 𝑣 2
2

Need to bound the influence of every coordinate.

• Truncate every coordinate at 𝒓/𝒌 ,i.e., 𝒗𝒊 = 𝐦𝐢𝐧{𝒗𝒊, 𝒓/𝒌}

• 𝒓 −Light point: a point with norm ≤ 𝑟 after truncation

• R− Heavy point: a point with norm ≥ 𝑅 after truncation

• Close point: a point with norm ≤ 𝑟 after ignoring 𝑘 coordinates

• Far point: a point with norm ≥ 𝑟/𝛿 after ignoring 𝑘/𝛿 coordinates

Claim:

• A close point is 2𝑟 −light.

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

• 𝔼 𝑓′ 𝑣 1 = 𝜏 𝑣 1

• 𝐕𝐚𝐫 𝑓′ 𝑣 1 = 𝜏 1 − 𝜏 𝑣 2
2

Need to bound the influence of every coordinate.

• Truncate every coordinate at 𝒓/𝒌 ,i.e., 𝒗𝒊 = 𝐦𝐢𝐧{𝒗𝒊, 𝒓/𝒌}

• 𝒓 −Light point: a point with norm ≤ 𝑟 after truncation

• R− Heavy point: a point with norm ≥ 𝑅 after truncation

• Close point: a point with norm ≤ 𝑟 after ignoring 𝑘 coordinates

• Far point: a point with norm ≥ 𝑟/𝛿 after ignoring 𝑘/𝛿 coordinates

Claim:

• A close point is 2𝑟 −light.

• A far point is
𝑟

𝛿
−heavy.

Truncation

Coordinates are not necessarily 𝟎 and ∞

Let 𝒇′ be obtained by sampling every coordinate with probability 𝝉 = 𝜹/𝒌

• 𝔼 𝑓′ 𝑣 1 = 𝜏 𝑣 1

• 𝐕𝐚𝐫 𝑓′ 𝑣 1 = 𝜏 1 − 𝜏 𝑣 2
2

Need to bound the influence of every coordinate.

• Truncate every coordinate at 𝒓/𝒌 ,i.e., 𝒗𝒊 = 𝐦𝐢𝐧{𝒗𝒊, 𝒓/𝒌}

• 𝒓 −Light point: a point with norm ≤ 𝑟 after truncation

• R− Heavy point: a point with norm ≥ 𝑅 after truncation

• Close point: a point with norm ≤ 𝑟 after ignoring 𝑘 coordinates

• Far point: a point with norm ≥ 𝑟/𝛿 after ignoring 𝑘/𝛿 coordinates

Claim:

• A close point is 2𝑟 −light.

• A far point is
𝑟

𝛿
−heavy.

Analyze the behavior of the maps over the truncated points instead.

𝐿1 Norm
Using truncation

• Bound the variance and prove concentration for 𝒇′ by Chebyshev

𝐿1 Norm
Using truncation

• Bound the variance and prove concentration for 𝒇′ by Chebyshev

𝒇 is a concatenation of 𝒕 = 𝑶(𝒍𝒏 𝒏) such 𝒇′

𝐿1 Norm
Using truncation

• Bound the variance and prove concentration for 𝒇′ by Chebyshev

𝒇 is a concatenation of 𝒕 = 𝑶(𝒍𝒏 𝒏) such 𝒇′

• 𝔼 𝑓 𝑣 1 = 𝑡𝜏 𝑣 1

• Prove concentration for 𝒇 using Chernoff

𝐿1 Norm
Using truncation

• Bound the variance and prove concentration for 𝒇′ by Chebyshev

𝒇 is a concatenation of 𝒕 = 𝑶(𝒍𝒏 𝒏) such 𝒇′

• 𝔼 𝑓 𝑣 1 = 𝑡𝜏 𝑣 1

• Prove concentration for 𝒇 using Chernoff

distance #ignored
coordinates

Query Time
#Queries Query type

Opt 𝑟 𝑘

𝐿1 𝑂(
𝑟

𝛿
) 𝑂(

𝑘

𝛿
)

𝑛𝛿 2-ANN

Generalizations

 𝑳𝒑 norm

Generalizations

 𝑳𝒑 norm

• Minimize the 𝒗 𝒑
𝒑

norm, i.e., 𝒊𝒗𝒊
𝒑

similar to the 𝐿1 norm

Generalizations

 𝑳𝒑 norm

• Minimize the 𝒗 𝒑
𝒑

norm, i.e., 𝒊𝒗𝒊
𝒑

similar to the 𝐿1 norm

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

Generalizations

 𝑳𝒑 norm

• Minimize the 𝒗 𝒑
𝒑

norm, i.e., 𝒊𝒗𝒊
𝒑

similar to the 𝐿1 norm

 Budgeted

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

Generalizations

 𝑳𝒑 norm

• Minimize the 𝒗 𝒑
𝒑

norm, i.e., 𝒊𝒗𝒊
𝒑

similar to the 𝐿1 norm

 Budgeted

• Map:

o sample coordinate 𝒊 with probability proportional to 𝟏/𝒘𝒊

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

Generalizations

 𝑳𝒑 norm

• Minimize the 𝒗 𝒑
𝒑

norm, i.e., 𝒊𝒗𝒊
𝒑

similar to the 𝐿1 norm

 Budgeted

• Map:

o sample coordinate 𝒊 with probability proportional to 𝟏/𝒘𝒊
o To maintain the expectation multiply sampled coordinates by 𝒘𝒊

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

Generalizations

 𝑳𝒑 norm

• Minimize the 𝒗 𝒑
𝒑

norm, i.e., 𝒊𝒗𝒊
𝒑

similar to the 𝐿1 norm

 Budgeted

• Map:

o sample coordinate 𝒊 with probability proportional to 𝟏/𝒘𝒊
o To maintain the expectation multiply sampled coordinates by 𝒘𝒊

• Truncation:

o Truncate coordinate 𝒊 with by value
𝒓

𝒄/𝒘𝒊−𝟏

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

Generalizations

 𝑳𝒑 norm

• Minimize the 𝒗 𝒑
𝒑

norm, i.e., 𝒊𝒗𝒊
𝒑

similar to the 𝐿1 norm

 Budgeted

• Map:

o sample coordinate 𝒊 with probability proportional to 𝟏/𝒘𝒊
o To maintain the expectation multiply sampled coordinates by 𝒘𝒊

• Truncation:

o Truncate coordinate 𝒊 with by value
𝒓

𝒄/𝒘𝒊−𝟏

o E.g. a coordinate of cost approaching 0 will be truncated to 0

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

Generalizations

 𝑳𝒑 norm

• Minimize the 𝒗 𝒑
𝒑

norm, i.e., 𝒊𝒗𝒊
𝒑

similar to the 𝐿1 norm

 Budgeted

• Map:

o sample coordinate 𝒊 with probability proportional to 𝟏/𝒘𝒊
o To maintain the expectation multiply sampled coordinates by 𝒘𝒊

• Truncation:

o Truncate coordinate 𝒊 with by value
𝒓

𝒄/𝒘𝒊−𝟏

o E.g. a coordinate of cost approaching 0 will be truncated to 0

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

Budgeted Version 𝑂(𝑟) Weight of 𝑂(1) 𝑛𝛿 2-ANN

+𝑂(𝑛𝛿𝑑4)

Conclusion
distance #ignored

coordinates
Query Time

#Queries Query type

Opt 𝑟 𝑘

𝐿1 𝑂(
𝑟

𝛿
) 𝑂(

𝑘

𝛿
)

𝑛𝛿 2-ANN

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

(1 + 𝜖)-
approximation

𝑟(1 + 𝜖) 𝑂(
𝑘

𝜖𝛿
) O(

𝑛𝛿

𝜖
) 1 + 𝜖 −ANN

Budgeted Version 𝑂(𝑟) Weight of 𝑂(1) 𝑛𝛿 2-ANN

+𝑂(𝑛𝛿𝑑4)

Conclusion

Open Problems

• Improve the dependence on 𝛿

• Prove lower bounds

distance #ignored
coordinates

Query Time
#Queries Query type

Opt 𝑟 𝑘

𝐿1 𝑂(
𝑟

𝛿
) 𝑂(

𝑘

𝛿
)

𝑛𝛿 2-ANN

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

(1 + 𝜖)-
approximation

𝑟(1 + 𝜖) 𝑂(
𝑘

𝜖𝛿
) O(

𝑛𝛿

𝜖
) 1 + 𝜖 −ANN

Budgeted Version 𝑂(𝑟) Weight of 𝑂(1) 𝑛𝛿 2-ANN

+𝑂(𝑛𝛿𝑑4)

Conclusion

Open Problems

• Improve the dependence on 𝛿

• Prove lower bounds

distance #ignored
coordinates

Query Time
#Queries Query type

Opt 𝑟 𝑘

𝐿1 𝑂(
𝑟

𝛿
) 𝑂(

𝑘

𝛿
)

𝑛𝛿 2-ANN

𝐿𝒑
𝑂(𝑟 𝑐 +

1

𝛿

1/𝒑

)
𝑂(𝑘 𝑐 +

1

𝛿
) 𝑛𝛿 𝑐1/𝐩-ANN

(1 + 𝜖)-
approximation

𝑟(1 + 𝜖) 𝑂(
𝑘

𝜖𝛿
) O(

𝑛𝛿

𝜖
) 1 + 𝜖 −ANN

Budgeted Version 𝑂(𝑟) Weight of 𝑂(1) 𝑛𝛿 2-ANN

+𝑂(𝑛𝛿𝑑4)

Thank You!

