Proximity in the Age of Distraction:

Robust Approximate Nearest Neighbor Search

Sariel Har-Peled UIUC

Sepideh Mahabadi MIT

Nearest Neighbor Problem

Nearest Neighbor

Dataset of n points P in a metric space $\left(X, d_{X}\right)$, e.g. \mathbb{R}^{d}

Nearest Neighbor

Dataset of n points P in a metric space $\left(X, d_{X}\right)$, e.g. \mathbb{R}^{d}
A query point q comes online

Nearest Neighbor

Dataset of n points P in a metric space $\left(X, d_{X}\right)$, e.g. \mathbb{R}^{d}
A query point q comes online

Goal:

- Find the nearest data point p^{*}

Nearest Neighbor

Dataset of n points P in a metric space $\left(X, d_{X}\right)$, e.g. \mathbb{R}^{d}
A query point q comes online

Goal:

- Find the nearest data point p^{*}

- Do it in sub-linear time and small space

Approximate Nearest Neighbor

Dataset of n points P in a metric space $\left(X, d_{X}\right)$, e.g. \mathbb{R}^{d}
A query point q comes online

Goal:

- Find the nearest data point p^{*}

- Do it in sub-linear time and small space
- Approximate Nearest Neighbor
- If optimal distance is r, report a point in distance $c r$ for $c=(1+\epsilon)$

Approximate Nearest Neighbor

Dataset of n points P in a metric space $\left(X, d_{X}\right)$, e.g. \mathbb{R}^{d}
A query point q comes online

Goal:

- Find the nearest data point p^{*}

- Do it in sub-linear time and small space
- Approximate Nearest Neighbor
- If optimal distance is r, report a point in distance $c r$ for $c=(1+\epsilon)$
- For Hamming (and L_{1}) query time is $n^{1 / O(c)}$ [IM98]
- and for Euclidean $\left(L_{2}\right)$ it is $n^{\frac{1}{O\left(c^{2}\right)}}$ [AIO8]

Applications of NN

Searching for the closest object

Robust NN Problem

Robustness

The data points are:

Robustness

The data points are:

- corrupted, noisy
- Image denoising

Robustness

The data points are:

- corrupted, noisy
- Image denoising
- Incomplete
- Recommendation: Sparse matrix

Robustness

The data points are:

- corrupted, noisy
- Image denoising
- Incomplete
- Recommendation: Sparse matrix
- Irrelevant
- Occluded image

The Robust NN problem

- Dataset of n points P in \mathbb{R}^{d}

$$
n=3
$$

$$
\begin{aligned}
& p_{1}=(3,4,0,5) \\
& p_{2}=(3,2,1,2) \\
& p_{3}=(2,3,3,1)
\end{aligned}
$$

The Robust NN problem

- Dataset of n points P in \mathbb{R}^{d}

$$
n=3, k=2
$$

- A parameter \boldsymbol{k}

$$
\begin{aligned}
& p_{1}=(3,4,0,5) \\
& p_{2}=(3,2,1,2) \\
& p_{3}=(2,3,3,1)
\end{aligned}
$$

The Robust NN problem

- Dataset of n points P in \mathbb{R}^{d}
- A parameter \boldsymbol{k}

$$
\begin{aligned}
& q=(1,2,1,5) \\
& p_{1}=(3,4,0,5) \\
& p_{2}=(3,2,1,2) \\
& p_{3}=(2,3,3,1)
\end{aligned}
$$

$$
n=3, k=2
$$

- A query point q comes online
- Find the closest point after removing k coordinates

The Robust NN problem

- Dataset of n points P in \mathbb{R}^{d}
- A parameter \boldsymbol{k}
- A query point q comes online
- Find the closest point after removing k coordinates

$$
\begin{array}{ll}
q=(1,2,1,5) & \mathrm{n}=\mathbf{3}, \mathrm{k}=\mathbf{2} \\
p_{1}=(3,4,0,5) & \text { dist=1 } \\
p_{2}=(3,2,1,2) & \text { dist=0 } \\
p_{3}=(2,3,3,1) & \text { dist=2 }
\end{array}
$$

The Robust NN problem

- Dataset of n points P in \mathbb{R}^{d}
- A parameter k
- A query point q comes online
- Find the closest point after removing k coordinates

$$
\begin{array}{ll}
q=(1,2,1,5) & \mathbf{n}=\mathbf{3}, \mathbf{k}=\mathbf{2} \\
p_{1}=(3,4,0,5) & \text { dist=1 } \\
p_{2}=(3,2,1,2) & \text { dist=0 } \\
p_{3}=(2,3,3,1) & \text { dist=2 }
\end{array}
$$

The Robust NN problem

- Dataset of n points P in \mathbb{R}^{d}

$$
\begin{array}{ll}
q=(1,2,1,5) & \mathrm{n}=\mathbf{3}, \mathbf{k}=\mathbf{2} \\
p_{1}=(3,4,0,5) & \text { dist=1 } \\
p_{2}=(3,2,1,2) & \text { dist=0 } \\
p_{3}=(2,3,3,1) & \text { dist=2 }
\end{array}
$$

- A parameter k
- A query point q comes online
- Find the closest point after removing k coordinates
$>$ Different set of coordinates for different points
$>$ Applying this naively would require $\binom{d}{k} \approx d^{k}$

Budgeted Version

- Dataset of n points P in \mathbb{R}^{d}
- d weights

$$
\begin{array}{ll}
w=\left(w_{1}, w_{2}, \ldots, w_{d}\right) \in[0,1]^{d} & p_{1}=(1,4,0,3) \\
& p_{2}=(3,2,4,2) \\
& p_{3}=(4,6,3,4)
\end{array}
$$

$$
n=3
$$

Budgeted Version

- Dataset of n points P in \mathbb{R}^{d}
- d weights

$$
w=\left(w_{1}, w_{2}, \ldots, w_{d}\right) \in[0,1]^{d}
$$

- A query point q comes online
- Find the closest point after removing a set of coordinates B of weight at most 1.

$$
\begin{aligned}
& w=(0.5,0.5,0.8,0.3) \\
& q=(1,2,5,5) \quad \mathrm{n}=3 \\
& p_{1}=(1,4,0,3) \\
& p_{2}=(3,2,4,2) \\
& p_{3}=(4,6,3,4)
\end{aligned}
$$

Budgeted Version

- Dataset of n points P in \mathbb{R}^{d}
- d weights

$$
w=\left(w_{1}, w_{2}, \ldots, w_{d}\right) \in[0,1]^{d}
$$

- A query point q comes online
- Find the closest point after removing a set of coordinates B of weight at most 1.

$$
\begin{aligned}
& w=(0.5,0.5,0.8,0.3) \\
& q=(1,2,5,5) \quad \mathrm{n}=3 \\
& p_{1}=(1,4,0,3) \\
& p_{2}=(3,2,4,2) \\
& p_{3}=(4,6,3,4)
\end{aligned}
$$

Budgeted Version

- Dataset of n points P in \mathbb{R}^{d}
- d weights

$$
w=\left(w_{1}, w_{2}, \ldots, w_{d}\right) \in[0,1]^{d}
$$

- A query point q comes online
- Find the closest point after removing a set of coordinates B of weight at most 1.

$$
\begin{array}{ll}
w=(0.5,0.5,0.8,0.3) \\
q=(1,2,5,5) & \mathrm{n}=3 \\
p_{1}=(1,4,0,3) & \text { dist=4 } \\
p_{2}=(3,2,4,2) & \text { dist=1 } \\
p_{3}=(4,6,3,4) & \text { dist=3 }
\end{array}
$$

Budgeted Version

- Dataset of n points P in \mathbb{R}^{d}
- d weights

$$
w=\left(w_{1}, w_{2}, \ldots, w_{d}\right) \in[0,1]^{d}
$$

- A query point q comes online
- Find the closest point after removing a set of coordinates B of weight at most 1.

$$
\begin{array}{ll}
w=(0.5,0.5,0.8,0.3) \\
q=(1,2,5,5) & \mathrm{n}=3 \\
p_{1}=(1,4,0,3) & \text { dist=4 } \\
p_{2}=(3,2,4,2) & \text { dist=1 } \\
p_{3}=(4,6,3,4) & \text { dist=3 }
\end{array}
$$

Results

Bicriterion Approximation, for L_{1} norm

- Suppose that for $p^{*} \subset P$ we have $\operatorname{dist}\left(q, p^{*}\right)=r$ after ignoring k coordinates

Results

Bicriterion Approximation, for L_{1} norm

- Suppose that for $p^{*} \subset P$ we have $\operatorname{dist}\left(q, p^{*}\right)=r$ after ignoring k coordinates
- For $\delta \in(0,1)$
- Report a point p s.t. $\operatorname{dist}(q, p)=O(r / \delta)$ after ignoring $O(k / \delta)$ coordinates.
- Query time equals to n^{δ} queries in 2-ANN datastructure

Results

Bicriterion Approximation, for L_{1} norm

- Suppose that for $p^{*} \subset P$ we have $\operatorname{dist}\left(q, p^{*}\right)=r$ after ignoring k coordinates
- For $\delta \in(0,1)$
- Report a point p s.t. $\operatorname{dist}(q, p)=O(r / \delta)$ after ignoring $O(k / \delta)$ coordinates.
- Query time equals to n^{δ} queries in 2-ANN datastructure

Why not single criterion?

- Equivalent to exact near neighbor in Hamming: there is a point within distance r of the query iff there is a point within distance 0 after ignoring $k=r$ coordinates

Results
MITCSAIL

distance	\#ignored coordinates	\#Queries	Query Time	
	r	k		

Results

| | distance | \#ignored
 coordinates | \#Queries | |
| :---: | :---: | :---: | :---: | :---: | Query Time | Query type |
| :--- |
| Opt |
| L_{1} |

Results

	distance	\#ignored coordinates	\#Queries	Query Time
Opt	r	k		
L_{1}	$O\left(\frac{r}{\delta}\right)$	$O\left(\frac{k}{\delta}\right)$	n^{δ}	$2-\mathrm{ANN}$
L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / \mathrm{p}}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathrm{p}}-\mathrm{ANN}$

Results

	distance	\#ignored coordinates	Query Time \#Queries	
Opt	r	k		
L_{1}	$O\left(\frac{r}{\delta}\right)$	$O\left(\frac{k}{\delta}\right)$	n^{δ}	2-ANN
L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / \mathrm{p}}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathrm{p}}$-ANN
$(1+\epsilon)-$ approximation	$r(1+\epsilon)$	$O\left(\frac{k}{\epsilon \delta}\right)$	$O\left(\frac{n^{\delta}}{\epsilon}\right)$	$(1+\epsilon)$-ANN

Results

	distance	\#ignored coordinates	\#Queries	
Opt	r	k		Query type
L_{1}	$O\left(\frac{r}{\delta}\right)$	$O\left(\frac{k}{\delta}\right)$	n^{δ}	2-ANN
L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / \mathrm{p}}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathrm{p}}$-ANN
$(1+\epsilon)-$ approximation	$r(1+\epsilon)$	$O\left(\frac{k}{\epsilon \delta}\right)$	$0\left(\frac{n^{\delta}}{\epsilon}\right)$	$(1+\epsilon)-\mathrm{ANN}$
Budgeted Version	$O(r)$	Weight of $O(1)$	n^{δ}	2-ANN

Algorithm

High Level Algorithm

Theorem. If for a point $p^{*} \subset P$, the L_{1} distance of q and p^{*} is at most r after removing k coordinates, there exists an algorithm which reports a point p whose distance to q is $O(r / \delta)$ after removing $O(k / \delta)$ coordinates.

High Level Algorithm

Theorem. If for a point $p^{*} \subset P$, the L_{1} distance of q and p^{*} is at most r after removing k coordinates, there exists an algorithm which reports a point p whose distance to q is $O(r / \delta)$ after removing $O(k / \delta)$ coordinates.

- Cannot apply randomized dimensionality reduction e.g. Johnson-Lindenstrauss

High Level Algorithm

Theorem. If for a point $p^{*} \subset P$, the L_{1} distance of q and p^{*} is at most r after removing k coordinates, there exists an algorithm which reports a point p whose distance to q is $O(r / \delta)$ after removing $O(k / \delta)$ coordinates.

- Cannot apply randomized dimensionality reduction e.g. Johnson-Lindenstrauss
- A set of randomized maps $f_{1}, f_{2}, \ldots f_{m}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$
- All of them map far points from query to far points
- At least one of them maps a close point to a close point

High Level Algorithm

Theorem. If for a point $p^{*} \subset P$, the L_{1} distance of q and p^{*} is at most r after removing k coordinates, there exists an algorithm which reports a point p whose distance to q is $O(r / \delta)$ after removing $O(k / \delta)$ coordinates.

- Cannot apply randomized dimensionality reduction e.g. Johnson-Lindenstrauss
- A set of randomized maps $f_{1}, f_{2}, \ldots f_{m}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$
- All of them map far points from query to far points
- At least one of them maps a close point to a close point
- W.l.o.g. assume that the query is the origin
- Find the data point with minimum norm.

A Randomized Map

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$:

A Randomized Map

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$:
- Repeat $t=O(\ln n)$ times
- Sample each coordinate in [d] with probability δ / k

A Randomized Map

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$:
- Repeat $t=O(\ln n)$ times
- Sample each coordinate in [d] with probability δ / k
- E.g. $d=5$
o round 1: coordinates $(1,3,4)$ sampled
- round 2: coordinate (4) sampled
- $v=(3,6,1,2,4)$ maps to $f(v)=(3,1,2,2)$

A Randomized Map

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$:
- Repeat $t=O(\ln n)$ times
- Sample each coordinate in [d] with probability δ / k
- E.g. $d=5$
- round 1: coordinates $(1,3,4)$ sampled
- round 2: coordinate (4) sampled

$$
\mathbb{E}\left[d^{\prime}\right]=O\left(d \ln n \cdot \frac{\delta}{k}\right)
$$

- $v=(3,6,1,2,4)$ maps to $f(v)=(3,1,2,2)$

A Dandomited Mar

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$:
- Repeat $t=O(\ln n)$ times
- Sample each coordinate in [d] with probability δ / k
- E.g. $d=5$
- round 1: coordinates $(1,3,4)$ sampled
- round 2: coordinate (4) sampled

$$
\mathbb{E}\left[d^{\prime}\right]=O\left(d \ln n \cdot \frac{\delta}{k}\right)
$$

- $v=(3,6,1,2,4)$ maps to $f(v)=(3,1,2,2)$
- Simple setup: Consider a vector v where each coordinate is either 0 or ∞

A Dancomicearan

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$:
- Repeat $t=O(\ln n)$ times
- Sample each coordinate in [d] with probability δ / k
- E.g. $d=5$
- round 1: coordinates $(1,3,4)$ sampled
- round 2: coordinate (4) sampled

$$
\mathbb{E}\left[d^{\prime}\right]=O\left(d \ln n \cdot \frac{\delta}{k}\right)
$$

- $v=(3,6,1,2,4)$ maps to $f(v)=(3,1,2,2)$
- Simple setup: Consider a vector v where each coordinate is either 0 or ∞
- Close point:
- v has at most k large coordinates
- Probability of avoiding large coordinates is at least $\left(1-\frac{\delta}{k}\right)^{k \cdot \ln n} \approx n^{-\delta}$

A Dandomited Man

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$:
- Repeat $t=O(\ln n)$ times
- Sample each coordinate in [d] with probability δ / k
- E.g. $d=5$
- round 1: coordinates $(1,3,4)$ sampled
- round 2: coordinate (4) sampled

$$
\mathbb{E}\left[d^{\prime}\right]=O\left(d \ln n \cdot \frac{\delta}{k}\right)
$$

- $v=(3,6,1,2,4)$ maps to $f(v)=(3,1,2,2)$
- Simple setup: Consider a vector v where each coordinate is either 0 or ∞
- Close point:
- v has at most k large coordinates
- Probability of avoiding large coordinates is at least $\left(1-\frac{\delta}{k}\right)^{k \cdot \ln n} \approx n^{-\delta}$
- Far point
- v has at least k / δ large coordinates
- Probability of missing large coordinates is at most $\left(1-\frac{\delta}{k}\right)^{(k / \delta) \cdot \ln n} \approx 1 / n$

Outline

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$
- With probability $n^{-\delta}$
- all far points will be mapped to far points under L_{1} distance
- a close by point will be mapped to a close by point under L_{1} distance.

Outline

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$
- With probability $n^{-\delta}$
- all far points will be mapped to far points under L_{1} distance
- a close by point will be mapped to a close by point under L_{1} distance.
- We can use ANN as a black-box to find it

Outline

- Embed all the points using a random mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$
- With probability $n^{-\delta}$
- all far points will be mapped to far points under L_{1} distance
- a close by point will be mapped to a close by point under L_{1} distance.
- We can use ANN as a black-box to find it
- Repeat this embedding $O\left(n^{\delta} \log n\right)$ times and report the best.

Algorithm

Ignore k-coords

$$
R^{d} \quad . \quad \text {. }
$$

Algorithm

Algorithm

Algorithm

n^{δ} times

Algorithm

n^{δ} times

Check the distance of all n^{δ} candidates and report the closest one after ignoring k coordinates

Analysis

Truncation

Coordinates are not necessarily 0 and ∞

Truncation

Coordinates are not necessarily 0 and ∞
Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\boldsymbol{\delta} / \boldsymbol{k}$

Truncation

Coordinates are not necessarily $\mathbf{0}$ and ∞
Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\delta / k$

- $\mathbb{E}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau|v|_{1}$

Truncation

Coordinates are not necessarily $\mathbf{0}$ and ∞
Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\boldsymbol{\delta} / \boldsymbol{k}$

- $\mathbb{E}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau|v|_{1}$
- $\operatorname{Var}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau(1-\tau)|v|_{2}^{2}$

Truncation

Coordinates are not necessarily $\mathbf{0}$ and ∞
Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\delta / k$

- $\mathbb{E}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau|v|_{1}$
- $\operatorname{Var}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau(1-\tau)|v|_{2}^{2}$

Need to bound the influence of every coordinate.

Truncation

Coordinates are not necessarily $\mathbf{0}$ and ∞
Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\delta / k$

- $\mathbb{E}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau|v|_{1}$
- $\operatorname{Var}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau(1-\tau)|v|_{2}^{2}$

Need to bound the influence of every coordinate.

- Truncate every coordinate at $\boldsymbol{r} / \boldsymbol{k}$,i.e., $\boldsymbol{v}_{\boldsymbol{i}}=\min \left\{\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{r} / \boldsymbol{k}\right\}$

Truncation

Coordinates are not necessarily $\mathbf{0}$ and ∞
Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\boldsymbol{\delta} / \boldsymbol{k}$

- $\mathbb{E}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau|v|_{1}$
- $\operatorname{Var}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau(1-\tau)|v|_{2}^{2}$

Need to bound the influence of every coordinate.

- Truncate every coordinate at r / k,i.e., $v_{i}=\min \left\{v_{i}, r / k\right\}$
- \boldsymbol{r}-Light point: a point with norm $\leq r$ after truncation
- R-Heavy point: a point with norm $\geq R$ after truncation

Truncation

Coordinates are not necessarily $\mathbf{0}$ and ∞
Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\delta / k$

- $\mathbb{E}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau|v|_{1}$
- $\operatorname{Var}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau(1-\tau)|v|_{2}^{2}$

Need to bound the influence of every coordinate.

- Truncate every coordinate at r / \boldsymbol{k},i.e., $\boldsymbol{v}_{i}=\min \left\{\boldsymbol{v}_{i}, \boldsymbol{r} / \boldsymbol{k}\right\}$
- \boldsymbol{r}-Light point: a point with norm $\leq r$ after truncation
- R-Heavy point: a point with norm $\geq R$ after truncation
- Close point: a point with norm $\leq r$ after ignoring k coordinates
- Far point: a point with norm $\geq r / \delta$ after ignoring k / δ coordinates

Truncation

Coordinates are not necessarily $\mathbf{0}$ and ∞
Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\delta / k$

- $\mathbb{E}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau|v|_{1}$
- $\operatorname{Var}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau(1-\tau)|v|_{2}^{2}$

Need to bound the influence of every coordinate.

- Truncate every coordinate at r / k,i.e., $v_{i}=\min \left\{v_{i}, r / k\right\}$
- \boldsymbol{r}-Light point: a point with norm $\leq r$ after truncation
- R-Heavy point: a point with norm $\geq R$ after truncation
- Close point: a point with norm $\leq r$ after ignoring k coordinates
- Far point: a point with norm $\geq r / \delta$ after ignoring k / δ coordinates

Claim:

- A close point is $2 r$-light.

Truncation

Coordinates are not necessarily 0 and ∞

Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\delta / k$

- $\mathbb{E}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau|v|_{1}$
- $\operatorname{Var}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau(1-\tau)|v|_{2}^{2}$

Need to bound the influence of every coordinate.

- Truncate every coordinate at r / \boldsymbol{k},i.e., $\boldsymbol{v}_{i}=\min \left\{\boldsymbol{v}_{i}, \boldsymbol{r} / \boldsymbol{k}\right\}$
- \boldsymbol{r}-Light point: a point with norm $\leq r$ after truncation
- R-Heavy point: a point with norm $\geq R$ after truncation
- Close point: a point with norm $\leq r$ after ignoring k coordinates
- Far point: a point with norm $\geq r / \delta$ after ignoring k / δ coordinates

Claim:

- A close point is $2 r$-light.
- A far point is $\frac{r}{\delta}$-heavy.

Truncation

Coordinates are not necessarily 0 and ∞
Let f^{\prime} be obtained by sampling every coordinate with probability $\tau=\boldsymbol{\delta} / \boldsymbol{k}$

- $\mathbb{E}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau|v|_{1}$
- $\operatorname{Var}\left[\left|f^{\prime}(v)\right|_{1}\right]=\tau(1-\tau)|v|_{2}^{2}$

Need to bound the influence of every coordinate.

- Truncate every coordinate at r / k,i.e., $v_{i}=\min \left\{v_{i}, r / k\right\}$
- \boldsymbol{r}-Light point: a point with norm $\leq r$ after truncation
- R-Heavy point: a point with norm $\geq R$ after truncation
- Close point: a point with norm $\leq r$ after ignoring k coordinates
- Far point: a point with norm $\geq r / \delta$ after ignoring k / δ coordinates

Claim:

- A close point is $2 r$-light.
- A far point is $\frac{r}{\delta}$-heavy.
$>$ Analyze the behavior of the maps over the truncated points instead.

L_{1} Norm

Using truncation

- Bound the variance and prove concentration for f^{\prime} by Chebyshev

L_{1} Norm

Using truncation

- Bound the variance and prove concentration for f^{\prime} by Chebyshev
f is a concatenation of $\boldsymbol{t}=\boldsymbol{O}(\ln n)$ such f^{\prime}

L_{1} Norm

Using truncation

- Bound the variance and prove concentration for f^{\prime} by Chebyshev
\boldsymbol{f} is a concatenation of $\boldsymbol{t}=\boldsymbol{O}(\ln \boldsymbol{n})$ such \boldsymbol{f}^{\prime}
- $\mathbb{E}\left[|f(v)|_{1}\right]=t \tau|v|_{1}$
- Prove concentration for f using Chernoff

L_{1} Norm

Using truncation

- Bound the variance and prove concentration for f^{\prime} by Chebyshev
\boldsymbol{f} is a concatenation of $\boldsymbol{t}=\boldsymbol{O}(\ln \boldsymbol{n})$ such \boldsymbol{f}^{\prime}
- $\mathbb{E}\left[|f(v)|_{1}\right]=t \tau|v|_{1}$
- Prove concentration for f using Chernoff

| | distance | \#ignored
 coordinates | \#Queries |
| :---: | :---: | :---: | :---: | :---: | Query Time | Query type |
| :--- |
| Opt |

Generalizations

[L_{p} norm

Generalizations

[L_{p} norm

- Minimize the $|v|_{p}^{p}$ norm, i.e., $\sum_{i} v_{i}^{p}$ similar to the L_{1} norm

Generalizations

- L_{p} norm
- Minimize the $|v|_{p}^{p}$ norm, i.e., $\sum_{i} v_{i}^{p}$ similar to the L_{1} norm

L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathrm{P}-\mathrm{ANN}}$

Generalizations

- L_{p} norm
- Minimize the $|v|_{p}^{p}$ norm, i.e., $\sum_{i} v_{i}^{p}$ similar to the L_{1} norm

L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}
$c^{1 / \mathrm{P}-A N N}$			

- Budgeted

Generalizations

[L_{p} norm

- Minimize the $|v|_{p}^{p}$ norm, i.e., $\sum_{i} v_{i}^{p}$ similar to the L_{1} norm

L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}
$c^{1 / \mathrm{P}-A N N}$			

- Budgeted
- Map:
- sample coordinate \boldsymbol{i} with probability proportional to $1 / w_{i}$

Generalizations

[L_{p} norm

- Minimize the $|v|_{p}^{p}$ norm, i.e., $\sum_{i} v_{i}^{p}$ similar to the L_{1} norm

L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}
$c^{1 / \mathrm{P}-A N N}$			

- Budgeted
- Map:
- sample coordinate i with probability proportional to $1 / w_{i}$
- To maintain the expectation multiply sampled coordinates by w_{i}

Generalizations

[L_{p} norm

- Minimize the $|v|_{p}^{p}$ norm, i.e., $\sum_{i} v_{i}^{p}$ similar to the L_{1} norm

L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathrm{P}-\text { ANN }}$

- Budgeted
- Map:
- sample coordinate i with probability proportional to $1 / w_{i}$
- To maintain the expectation multiply sampled coordinates by w_{i}
- Truncation:
- Truncate coordinate \boldsymbol{i} with by value $\frac{r}{c / w_{i}-1}$

Generalizations

[L_{p} norm

- Minimize the $|v|_{p}^{p}$ norm, i.e., $\sum_{i} v_{i}^{p}$ similar to the L_{1} norm

L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathrm{P}-\text { ANN }}$

- Budgeted
- Map:
- sample coordinate i with probability proportional to $1 / w_{i}$
- To maintain the expectation multiply sampled coordinates by w_{i}
- Truncation:
- Truncate coordinate i with by value $\frac{r}{c / w_{i}-1}$
- E.g. a coordinate of cost approaching 0 will be truncated to 0

Generalizations

[L_{p} norm

- Minimize the $|v|_{p}^{p}$ norm, i.e., $\sum_{i} v_{i}^{p}$ similar to the L_{1} norm

L_{p}	$o\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathrm{P}-\text { ANN }}$

- Budgeted
- Map:
- sample coordinate i with probability proportional to $1 / w_{i}$
- To maintain the expectation multiply sampled coordinates by w_{i}
- Truncation:
- Truncate coordinate i with by value $\frac{r}{c / w_{i}-1}$
- E.g. a coordinate of cost approaching 0 will be truncated to 0

Conclusion

	distance	\#ignored coordinates	Query Time	
			\#Queries	Query type
Opt	r	k		
L_{1}	$O\left(\frac{r}{\delta}\right)$	$O\left(\frac{k}{\delta}\right)$	n^{δ}	2-ANN
L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathrm{p}}$-ANN
$\begin{aligned} & \quad(1+\epsilon)- \\ & \text { approximation } \end{aligned}$	$r(1+\epsilon)$	$O\left(\frac{k}{\epsilon \delta}\right)$	$\mathrm{O}\left(\frac{n^{\delta}}{\epsilon}\right)$	$(1+\epsilon)-\mathrm{ANN}$
Budgeted Version	$O(r)$	Weight of $O(1)$	n^{δ}	$\left.d^{4}\right)$

Conclusion

	distance	\#ignored coordinates	\#Queries	Query Time
Opt	r	k		
L_{1}	$O\left(\frac{r}{\delta}\right)$	$O\left(\frac{k}{\delta}\right)$	n^{δ}	2-ANN
L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathbf{p}}$-ANN
$(1+\epsilon)-$ approximation	$r(1+\epsilon)$	$O\left(\frac{k}{\epsilon \delta}\right)$	$O\left(\frac{n^{\delta}}{\epsilon}\right)$	$(1+\epsilon)$-ANN
Budgeted Version	$O(r)$	Weight of $O(1)$	n^{δ}	

Open Problems

- Improve the dependence on δ
- Prove lower bounds

Conclusion

	distance	\#ignored coordinates	Query Time	
			\#Queries	Query type
Opt	r	k		
L_{1}	$O\left(\frac{r}{\delta}\right)$	$O\left(\frac{k}{\delta}\right)$	n^{δ}	2-ANN
L_{p}	$O\left(r\left(c+\frac{1}{\delta}\right)^{1 / p}\right)$	$O\left(k\left(c+\frac{1}{\delta}\right)\right)$	n^{δ}	$c^{1 / \mathbf{p}}$-ANN
$(1+\epsilon)-$ approximation	$r(1+\epsilon)$	$O\left(\frac{k}{\epsilon \delta}\right)$	$\mathrm{O}\left(\frac{n^{\delta}}{\epsilon}\right)$	$(1+\epsilon)-\mathrm{ANN}$
Budgeted Version	$O(r)$	Weight of $O(1)$	n^{δ}	$\left.d^{2}\right)^{2-\mathrm{ANN}}$

Open Problems

- Improve the dependence on δ
- Prove lower bounds

