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Approximate Nearest Neighbor """

Dataset of n points P in a metric space (X, dy), e.8. R%

A gquery point g comes online

Goal:
* Find the nearest data point p~ P’
e Do it in sub-linear time and small space

e Approximate Nearest Neighbor
— If optimal distance is r, report a point in distance cr for
c=(1+¢€)
— For Hamming (and L,) query time is n/9(¢) [IM98]
1

—and for Euclidean (L) it is n2*) [AlO08]



Applications of NN

Searching for the closest object

Database (60,000 images

nearest
neighbor
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The data points are:

e corrupted, noisy
* Image denoising

2O o
* Incomplete 3 8l-01-0-
: @ [---11 -
« Recommendation: Sparse <
matrix y,
* Irrelevant

* Occluded image
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e Dataset of n points P in R% n=3
p: = (3,4,0,5)
p, = (3,2,1,2)
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The Robust NN problem

e Dataset of n points P in R%
* A parameter k
* A query point g comes online

* Find the closest point after
removing k coordinates
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pz = (2,3,3,1)
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The Robust NN problem

e Dataset of n points P in R q= (1,2,1,5)
* A parameter k p1 = (5,4,0,5)
pz :( ;2;1; )

* A query point g comes online
; . P3 = (2'31 ’ )
* Find the closest point after

removing k coordinates

» Different set of coordinates for different points

> Applying this naively would require (z) ~ d¥

n=3,k=2
dist=1
dist=0
dist=2
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Budgeted Version

e Dataset of n points P in R%
* d weights

w = (Wq, Wy, ...,Wwg) € [0,1]¢
* A query point g comes online
* Find the closest point after

removing a set of coordinates B
of weight at most 1.

w = (0.5,0.5,0.8,0.3)

q = (1,2,5,5)
p1 = (1,4,0,3)
P2 = ( ,2,4‘, )
P3 = ( ’ '3'4)

n=3

dist=4
dist=1
dist=3



Budgeted Version

* Dataset of n points P in R? w = (0.5,0.5,0.8,0.3)
* d weights qg = (1,2,5,5) n=3
w = (Wyq,Ws, ...,wy) € [0,1]¢ p; = (1,4,0,3) dist=4
* A query point g comes online p2 = (5,24,7) d!5t=1
ps = (1,5,3,4) dist=3

* Find the closest point after
removing a set of coordinates B
of weight at most 1.
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ignoring O(k/6) coordinates.

o Query time equals to n® queries in 2-ANN data-
structure



Results

Bicriterion Approximation, for L; norm

* Suppose that for p* € P we have dist(q,p*) = r after
ignoring k coordinates

* For6 € (0,1)
o Report a point p s.t. dist(q,p) = 0(r/9) after
ignoring O(k/6) coordinates.
o Query time equals to n® queries in 2-ANN data-
structure
Why not single criterion?

* Equivalent to exact near neighbor in Hamming: there is a
point within distance r of the query iff there is a point
within distance O after ignoring k = r coordinates
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High Level Algorithm

/Theorem. If for a point p* € P, the L, distance of g and p~ is
at most r after removing k coordinates, there exists an
algorithm which reports a point p whose distance to g is

O(r /o) after removing O(k/6) coordinates.
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High Level Algorithm

/Theorem. If for a point p* € P, the L, distance of g and p~ is
at most r after removing k coordinates, there exists an
algorithm which reports a point p whose distance to g is

O(r /o) after removing O(k/6) coordinates.

e Cannot apply randomized dimensionality reduction e.g.
Johnson-Lindenstrauss

* Aset of randomized maps f1, f2, ... [ R? > RY

* All of them map far points from query to far points
* At least one of them maps a close point to a close point

* W.l.o.g. assume that the query is the origin
* Find the data point with minimum norm.
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A Randomized Map

* Embed all the points using a random mapping f: RY > Rd,:
o Repeatt = O(Inn) times
= Sample each coordinate in [d] with probability 6 /k

oEg.d=5
: : 6
o round 1 coord¥nates (1,3,4) sampled E[d'] = 0(dInn->)
o round 2: coordinate (4) sampled k

o v =(3,6,1,2,4) maps to f(v) = (3,1,2,2)
* Simple setup: Consider a vector v where each coordinate is either 0 or oo

* Close point:
o v has at most k large coordinates

k:lnn
o Probability of avoiding large coordinates is at least (1 — E) ~no



A Randomized Map

Embed all the points using a random mapping f: R? - Rd,:

o Repeatt = O(Inn) times

= Sample each coordinate in [d] with probability 6 /k

oEg.d=5
o round 1: coordinates (1,3,4) sampled

o round 2: coordinate (4) sampled
o v =(3,6,1,2,4) maps to f(v) = (3,1,2,2)

Simple setup: Consider a vector v where each coordinate is either 0 or oo

Close point:
o v has at most k large coordinates

k:lnn
o Probability of avoiding large coordinates is at least (1 — E) =~n

Far point
o v hasat least k/6 large coordinates

o Probability of missing large coordinates is at most (

-4

6)(k/6)-lnn

1—; %1/Tl

o)
E[d'] = 0(dInn-

k
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* Embed all the points using a random mapping f: R? - R
* With probability n=°

o all far points will be mapped to far points under L, distance
o a close by point will be mapped to a close by point under L, distance.
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Outline

* Embed all the points using a random mapping f: R? - R

* With probability n=°
o all far points will be mapped to far points under L, distance
o a close by point will be mapped to a close by point under L, distance.
o We can use ANN as a black-box to find it

* Repeat this embedding O(n® logn) times and report the
best.
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Check the distance of all n® candidates and report the closest one after ignoring
k coordinates
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Let f' be obtained by sampling every coordinate with probability T = 6/k
« E[lf'WIi] =tlvly
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Coordinates are not necessarily 0 and o

Let f' be obtained by sampling every coordinate with probability T = 6/k

E[lf' ()] = 7lvly
Var[lf' W] =7 (1 - 1)|vl}

Need to bound the influence of every coordinate.

Truncate every coordinate at r/k ,i.e., v; = min{v;, r/k}

1 —Light point: a point with norm < r after truncation

R— Heavy point: a point with norm > R after truncation

Close point: a point with norm < r after ignoring k coordinates
Far point: a point with norm = r /4§ after ignoring k /6 coordinates

A close point is 2r —light.
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Truncation

Coordinates are not necessarily 0 and o

Let f' be obtained by sampling every coordinate with probability T = 6/k

E[lf' ()] = 7lvly
Var[lf' W] =7 (1 - 1)|vl}

Need to bound the influence of every coordinate.

Truncate every coordinate at r /k ,i.e., v; = min{v;, r/k}

1 —Light point: a point with norm < r after truncation

R— Heavy point: a point with norm > R after truncation

Close point: a point with norm < r after ignoring k coordinates
Far point: a point with norm = r /4§ after ignoring k /6 coordinates

A close point is 2r —light.
r

5 heavy.

A far point is

» Analyze the behavior of the maps over the truncated points instead.

MITCSAILI
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* Bound the variance and prove concentration for f' by Chebyshev
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* Prove concentration for f using Chernoff
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Using truncation

* Bound the variance and prove concentration for f’ by Chebyshev
f is a concatenation of t = O(In n) such f’

* Ellf(w)|y] = tr|vl4

* Prove concentration for f using Chernoff
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O Lp norm

* Minimize the |v|£ norm, i.e., Ziv’i’ similar to the L; norm

L 1/p - 8 1/p.ANN
oc(c5) 5 | ot

d Budgeted

* Map:
o sample coordinate i with probability proportional to 1/w;
o To maintain the expectation multiply sampled coordinates by w;

* Truncation:

o Truncate coordinate i with by value
c/wi—1

o E.g. a coordinate of cost approaching O will be truncated to O
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Generalizations

O Lp norm

* Minimize the |v|£ norm, i.e., Ziv? similar to the L; norm

L 1\ /P 1 nd c1/P-.ANN
o) L ) L

O Budgeted

* Map:
o sample coordinate i with probability proportional to 1/w;
o To maintain the expectation multiply sampled coordinates by w;

* Truncation:

o Truncate coordinate i with by value
c/wi—1

o E.g. a coordinate of cost approaching O will be truncated to O
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